Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Microstructure

2018

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Direct Metal Laser-Sintered Stainless Steel: Comparison Of Microstructure And Hardness Between Different Planes, M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar Apr 2018

Direct Metal Laser-Sintered Stainless Steel: Comparison Of Microstructure And Hardness Between Different Planes, M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Microstructural analysis and micro-hardness measurements were performed on different planes of 316L stainless steel fabricated by direct metal laser sintering (DMLS) technique. A fine cellular network was observed within the steel microstructure, where morphology of most cells changed from columnar on XZ-plane (vertical section) to equiaxed on XY-plane (horizontal section). Correspondingly, morphology of most grains was found to alter from columnar for the XZ-plane to equiaxed in the case of the XY-plane. Moreover, X-ray diffraction (XRD) analysis revealed a fully austenitic structure for both the planes. The average micro-hardness value for the XZ-plane and XY-plane was insignificantly (≈ 3%) different, …


Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang Jan 2018

Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang

Doctoral Dissertations

"Microstructure and properties of Direct Metal Deposition (DMD) parts are very crucial to meeting industrial requirements of parts quality. Prediction, and control of microstructure and mechanical properties have attracted much attention during conventional metal manufacturing process under different conditions. However, there is few investigations focused on microstructure simulation and mechanical properties control under different process parameters during DMD process. This dissertation is intended to develop a multiscale model to investigate Ti6Al4V grain structure development and explore Ti6Al4V based functionally graded material (FGM) deposit properties during DMD process. The first research topic is to investigate and develop a cellular automaton-finite element …