Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Ultra-Thin Coating And Three-Dimensional Electrode Structures To Boosted Thick Electrode Lithium-Ion Battery Performance, Jie Li, Yan Gao, Xinhua Liang, Jonghyun Park Oct 2018

Ultra-Thin Coating And Three-Dimensional Electrode Structures To Boosted Thick Electrode Lithium-Ion Battery Performance, Jie Li, Yan Gao, Xinhua Liang, Jonghyun Park

Chemical and Biochemical Engineering Faculty Research & Creative Works

This paper reports a multiscale controlled three‐dimensional (3D) electrode structure to boost the battery performance for thick electrode batteries with LiMn1.5Ni0.5O4 as cathode material, which exhibits a high areal capacity (3.5 mAh/cm2) along with a high specific capacity (130 mAh/g). This excellent battery performance is achieved by a new concept of cell electrode fabrication, which simultaneously controls the electrode structure in a multiscale manner to address the key challenges of the material. Particles with ultrathin conformal coating layers are prepared through atomic layer deposition followed by a nanoscale‐controlled, thermal diffusion doping. The particles …


Multiscale Approaches Toward Advanced Lithium-Ion Battery: From Nano To Meso Scale, Susmita Sarkar Jan 2018

Multiscale Approaches Toward Advanced Lithium-Ion Battery: From Nano To Meso Scale, Susmita Sarkar

Masters Theses

“Battery performance and its degradation are determined by various aspects such as the transport of ions and electrons through heterogeneous internal structures composed of constituent particles, kinetic reactions at the interfaces, and a corresponding interplay between mechanical, chemical, and thermal responses. Further, modern battery materials require a variety of engineering processes such as coating, doping and mixing. As a result, in order to fully understand the behavior of the battery material and improve battery performance, it is necessary to understand and control the individual particle behavior and then connect it to the electrode. This study elucidated the physical phenomena associated …