Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

2018

3D printers

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Ultrafast X-Ray Imaging Of Laser-Metal Additive Manufacturing Processes, Niranjan D. Parab, Cang Zhao, Ross Cunningham, Luis I. Escano, Kamel Fezzaa, Wes Everhart, Anthony D. Rollett, Lianyi Chen, Tao Sun Sep 2018

Ultrafast X-Ray Imaging Of Laser-Metal Additive Manufacturing Processes, Niranjan D. Parab, Cang Zhao, Ross Cunningham, Luis I. Escano, Kamel Fezzaa, Wes Everhart, Anthony D. Rollett, Lianyi Chen, Tao Sun

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The high-speed synchrotron X-ray imaging technique was synchronized with a custom-built laser-melting setup to capture the dynamics of laser powder-bed fusion processes in situ. Various significant phenomena, including vapor-depression and melt-pool dynamics and powder-spatter ejection, were captured with high spatial and temporal resolution. Imaging frame rates of up to 10 MHz were used to capture the rapid changes in these highly dynamic phenomena. At the same time, relatively slow frame rates were employed to capture large-scale changes during the process. This experimental platform will be vital in the further understanding of laser additive manufacturing processes and will be particularly …


Additive Manufacturing Of Transparent Fused Quartz, Junjie Luo, John M. Hostetler, Luke Gilbert, Jonathan T. Goldstein, Augustine M. Urbas, Douglas A. Bristow, Robert G. Landers, Edward C. Kinzel Apr 2018

Additive Manufacturing Of Transparent Fused Quartz, Junjie Luo, John M. Hostetler, Luke Gilbert, Jonathan T. Goldstein, Augustine M. Urbas, Douglas A. Bristow, Robert G. Landers, Edward C. Kinzel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper investigates a filament-fed process for additive manufacturing (AM) of fused quartz. Glasses such as fused quartz have significant scientific and engineering applications, which include optics, communications, electronics, and hermetic seals. AM has several attractive benefits such as increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research into glass AM has focused primarily on nonoptical applications. Fused quartz is studied here because of its desirability for use in high-quality optics due to its high transmissivity and thermal stability. Fused quartz filaments are fed into a CO2 laser-generated molten region, smoothly depositing …