Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Series

Neurocontrollers

1999

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Online Identification And Control Of Aerospace Vehicles Using Recurrent Networks, Zhenning Hu, S. N. Balakrishnan Jan 1999

Online Identification And Control Of Aerospace Vehicles Using Recurrent Networks, Zhenning Hu, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Methods for estimating the aerospace system parameters and controlling them through two neural networks are presented in this study. We equate the energy function of Hopfield neural network to integral square of errors in the system dynamics and extract the parameters of a system. Parameter convergence is proved. For control, we equate the equilibrium status of a "modified" Hopfield neural network to the steady state Riccati solution with the system parameters as inputs. Through these two networks, we present the online identification and control of an aircraft using its nonlinear dynamics.


Adaptive Critic Based Neural Networks For Control-Constrained Agile Missile Control, Dongchen Han, S. N. Balakrishnan Jan 1999

Adaptive Critic Based Neural Networks For Control-Constrained Agile Missile Control, Dongchen Han, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We investigate the use of an `adaptive critic' based controller to steer an agile missile with a constraint on the angle of attack from various initial Mach numbers to a given final Mach number in minimum time while completely reversing its flightpath angle. We use neural networks with a two-network structure called `adaptive critic' to carry out the optimization process. This structure obtains an optimal controller through solving Hamiltonian equations. This approach needs no external training; each network along with the optimality equations generates the output for the other network. When the outputs are mutually consistent, the controller output is …