Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Aerospace Engineering

2012

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Loss Enhanced Transmission And Collimation In Anisotropic Epsilon-Near-Zero Metamaterials, L. Sun, S. Feng, Xiaodong Yang Dec 2012

Loss Enhanced Transmission And Collimation In Anisotropic Epsilon-Near-Zero Metamaterials, L. Sun, S. Feng, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We verify the extraordinary transmission enhancement and collimation induced by the material loss in anisotropic epsilon-near-zero metamaterials, and reveal the physical mechanism of this exotic electromagnetic phenomenon via the iso-frequency contour analysis. In addition, we demonstrate the possibility in realization of such loss enhanced transmission of Gaussian beam in realistic silver-germanium multilayered structures by applying full-wave numerical simulations.


A Method To Generate Pressure Gradients For Molecular Simulation Of Pressure-Driven Flows In Nanochannels, Zhi Liang, Hai-Lung Tsai Sep 2012

A Method To Generate Pressure Gradients For Molecular Simulation Of Pressure-Driven Flows In Nanochannels, Zhi Liang, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

One of the Difficulties in Molecular Simulation of Pressure-Driven Fluid Flow in Nanochannels is to Find an Appropriate Pressure Control Method. When Periodic Boundary Conditions (PBCs) Are Applied, a Gravity-Like Field Has Been Widely Used to Replace Actual Pressure Gradients. the Gravity-Fed Method is Not Only Artificial, But Not Adequate for Studying Properties of Fluid Systems Which Are Essentially Inhomogeneous in the Flow Direction. in This Paper, a Method is Proposed Which Can Generate Any Desired Pressure Difference to Drive the Fluid Flow by Attaching a "Pump" to the Nanofluidic System, While the Model is Still Compatible with PBCs. the …


Reduction Of Solid-Solid Thermal Boundary Resistance By Inserting An Interlayer, Zhi Liang, Hai-Lung Tsai May 2012

Reduction Of Solid-Solid Thermal Boundary Resistance By Inserting An Interlayer, Zhi Liang, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An Effective Method is Proposed to Greatly Improve the Thermal Transport Across the Interface between Two Solids with Dissimilar Phonon Spectra. If the Two Solids Have Similar Crystal Structure and Lattice Constant, It is Predicted from the Molecular Dynamics Modeling that an over 50% Reduction of the Thermal Boundary Resistance Can Be Achieved by Inserting a 3-Unit-Cell-Thick Interlayer Whose Debye Temperature is Approximately the Square Root of the Product of the Debye Temperatures of the Two Solids. on the Other Hand, If the Two Solids Have a Large Difference in Lattice Constant, It is Found the Interfacial Atomic Restructuring Plays …


A Nanoporous Silicon Nitride Membrane Using A Two-Step Lift-Off Pattern Transfer With Thermal Nanoimprint Lithography, Bhargav P. Nabar, Zeynep Çelik-Butler, Brian H. Dennis, Richard E. Billo Apr 2012

A Nanoporous Silicon Nitride Membrane Using A Two-Step Lift-Off Pattern Transfer With Thermal Nanoimprint Lithography, Bhargav P. Nabar, Zeynep Çelik-Butler, Brian H. Dennis, Richard E. Billo

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Nanoimprint lithography is emerging as a viable contender for fabrication of large-scale arrays of 5500 nm features. A fabrication process for the realization of thin nanoporous membranes using thermal nanoimprint lithography is presented. Suspended silicon nitride membranes were fabricated by low-pressure chemical vapor deposition (LPCVD) in conjunction with a potassium hydroxide-based bulk micromachining process. Nanoscale features were imprinted into a commercially available thermoplastic polymer resist using a prefabricated silicon mold. The pattern was reversed and transferred to a thin aluminum oxide layer by means of a novel two-stage lift-off technique. The patterned aluminum oxide was used as an etch mask …


Study Of Turbulence-Radiation Interaction In Hypersonic Turbulent Boundary Layers, L. (Lian) Duan, M. P. Martín, A. M. Feldick, M. F. Modest, D. A. Levin Feb 2012

Study Of Turbulence-Radiation Interaction In Hypersonic Turbulent Boundary Layers, L. (Lian) Duan, M. P. Martín, A. M. Feldick, M. F. Modest, D. A. Levin

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct numerical simulations are conducted to investigate the effect of turbulence-radiation interaction in hypersonic turbulent boundary layers, representative of the Orion crew exploration vehicle at the peak heating condition during reentry. Both the effects of emission and absorption are considered by solving the radiative transfer equation using the tangent slab approximation and a spectral model with line-by-line accuracy. Nondimensional governing parameters to measure the significance of turbulence-radiation interaction are proposed, and the direct numerical simulation fields with and without radiation coupling are used to assess turbulence-radiation interaction. Is it found that the fluid medium within the boundary layer is optically …


Biological Evaluation Of A Novel Tissue Engineering Scaffold Of Layered Double Hydroxides (Ldhs), Fateme Fayyazbakhsh, Mehran Solati-Hashjin, M. A. Shokrgozar, S. Bonakdar, Y. Ganji, N. Mirjordavi, S. A. Ghavimi, P. Khashayar Jan 2012

Biological Evaluation Of A Novel Tissue Engineering Scaffold Of Layered Double Hydroxides (Ldhs), Fateme Fayyazbakhsh, Mehran Solati-Hashjin, M. A. Shokrgozar, S. Bonakdar, Y. Ganji, N. Mirjordavi, S. A. Ghavimi, P. Khashayar

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Bone Tissue Engineering (BTE) Composed of Three Main Parts: Scaffold, Cells and Signaling Factors. Several Materials and Composites Are Suggested as a Scaffold for BTE. Biocompatibility is One of the Most Important Property of a BTE Scaffold. in This Work Synthesis of a Novel Nanocomposite Including Layered Double Hydroxides (LDH) and Gelatin is Carried Out and its Biological Properties Were Studied. the Co-Precipitation (PH=11) Method Was Used to Prepare the LDH Powder, using Calcium Nitrate, Magesium Nitrate and Aluminum Nitrate Salts as Starting Materials. the Resulted Precipitates Were Dried. X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron …


Numerical Study Of Pressure Fluctuations Due To High-Speed Turbulent Boundary Layers, Lian Duan, Meelan M. Choudhari, Minwei Wu Jan 2012

Numerical Study Of Pressure Fluctuations Due To High-Speed Turbulent Boundary Layers, Lian Duan, Meelan M. Choudhari, Minwei Wu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by fully developed turbulence in supersonic turbulent boundary layers with an emphasis on both pressure fluctuations at the wall and the acoustic fluctuations radiated into the freestream. The wall and freestream pressure fields are first analyzed for a zero-pressure gradient boundary layer with Mach 2.5 and Reynolds number based on momentum thickness of approximately 2835. The single and multi-point statistics reported include the wall pressure fluctuation intensities, frequency spectra, space-time correlations, and convection velocities. Single and multi-point statistics of surface pressure fluctuations show good agreement with measured data …


Effects Of Riblets On Skin Friction And Heat Transfer In High-Speed Turbulent Boundary Layers, Lian Duan, Meelan M. Choudhari Jan 2012

Effects Of Riblets On Skin Friction And Heat Transfer In High-Speed Turbulent Boundary Layers, Lian Duan, Meelan M. Choudhari

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct numerical simulations of spatially developing turbulent boundary layers over riblets are conducted to examine the effects of riblets on skin friction and heat transfer at high speeds. Zero-pressure gradient boundary layers under two flow conditions (Mach 2.5 with Tw/Tr = 1 and Mach 7.2 with Tw/Tr = 0.5) are considered. Simulations are conducted for boundary-layer flows over a clean surface and symmetric V-groove riblets. The DNS results at Mach 2.5 confirm the few existing experimental observations and show that a drag reduction of approximately 7% can be achieved for riblets with proper spacing. The comparisons in turbulence statistics and …