Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Mechanical Engineering

Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz Jan 2015

Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz

Jonathan C. Claussen

Enzymes provide the critical means by which to catalyze almost all biological reactions in a controlled manner. Methods to harness and exploit their properties are of strong current interest to the growing field of biotechnology. In contrast to depending upon recombinant genetic approaches, a growing body of evidence suggests that apparent enzymatic activity can be enhanced when located at a nanoparticle interface. We use semiconductor quantum dots (QDs) as a well-defined and easily bioconjugated nanoparticle along with Escherichia coli-derived alkaline phosphatase (AP) as a prototypical enzyme to seek evidence for this process in a de novo model system. We began …


Complex Logic Functions Implemented With Quantum Dot Bionanophotonic Circuits, Jonathan C. Claussen, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz Jan 2014

Complex Logic Functions Implemented With Quantum Dot Bionanophotonic Circuits, Jonathan C. Claussen, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz

Jonathan C. Claussen

We combine quantum dots (QDs) with long-lifetime terbium complexes (Tb), a near-IR Alexa Fluor dye (A647), and self-assembling peptides to demonstrate combinatorial and sequential bionanophotonic logic devices that function by time-gated Förster resonance energy transfer (FRET). Upon excitation, the Tb-QD-A647 FRET-complex produces time-dependent photoluminescent signatures from multi-FRET pathways enabled by the capacitor-like behavior of the Tb. The unique photoluminescent signatures are manipulated by ratiometrically varying dye/Tb inputs and collection time. Fluorescent output is converted into Boolean logic states to create complex arithmetic circuits including the half-adder/half-subtractor, 2:1 multiplexer/1:2 demultiplexer, and a 3-digit, 16-combination keypad lock.


Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen Jan 2014

Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen

Jonathan C. Claussen

Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of …


Biophotonic Logic Devices Based On Quantum Dots And Temporally-Staggered Forster Energy Transfer Relays, Jonathan C. Claussen, W. Russ Algar, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz Jan 2013

Biophotonic Logic Devices Based On Quantum Dots And Temporally-Staggered Forster Energy Transfer Relays, Jonathan C. Claussen, W. Russ Algar, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz

Jonathan C. Claussen

Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by …


Melting Point Suppression In New Lanthanoid(Iii) Ionic Liquids By Trapping Of Kinetic Polymorphs: An In Situsynchrotron Powder Diffraction Study, Anthony S.R. Chesman, Mei Yang, Bert Mallick, Tamsyn M. Ross, Ian A. Gass, Glen B. Deacon, Stuart R. Batten, Anja V. Mudring Jan 2012

Melting Point Suppression In New Lanthanoid(Iii) Ionic Liquids By Trapping Of Kinetic Polymorphs: An In Situsynchrotron Powder Diffraction Study, Anthony S.R. Chesman, Mei Yang, Bert Mallick, Tamsyn M. Ross, Ian A. Gass, Glen B. Deacon, Stuart R. Batten, Anja V. Mudring

Anja V. Mudring

he inclusion of lanthanoids in ionic liquids (ILs) offers an ideal route to incorporate their unique luminescent and magnetic properties into a bulk solution.1,2 However, lanthanoid compounds often exhibit a poor solubility in commonly used ILs because the IL anions are typically very weakly coordinating, prohibiting the simple dissolution of a lanthanoid salt by complexation to any beneficial extent.2 One strategy used to achieve high lanthanoid concentrations is to incorporate the lanthanoid cation directly into an anion that will form ILs.3 This is best accomplished by employing a ligand which readily coordinates to a lanthanoid atom and possesses properties, such …


Mercuric Ionic Liquids: [Cnmim][Hgx3], Where N = 3, 4 And X = Cl, Br, Bert Mallick, Andreas Metlen, Mark Nieuwenhuyzen, Robin D. Rogers, Anja V. Mudring Jan 2012

Mercuric Ionic Liquids: [Cnmim][Hgx3], Where N = 3, 4 And X = Cl, Br, Bert Mallick, Andreas Metlen, Mark Nieuwenhuyzen, Robin D. Rogers, Anja V. Mudring

Anja V. Mudring

A series of mercury(II) ionic liquids, [Cnmim][HgX3], where [Cnmim] = n-alkyl-3-methylimidazolium with n = 3, 4 and X = Cl, Br, have been synthesized following two different synthetic approaches, and structurally characterized by means of single-crystal X-ray structure analysis ([C3mim][HgCl3] (1), Cc (No. 9), Z = 4, a = 16.831(4) Å, b = 10.7496(15) Å, c = 7.4661(14) Å, β = 105.97(2)°, V = 1298.7(4) Å3 at 298 K; [C4mim][HgCl3] (2), Cc (No. 9), Z = 4, a = 17.3178(28) Å, b = 10.7410(15) Å, c = 7.4706(14) Å, β = 105.590(13)°, V = 1338.5(4) Å3 at 170 K; [C3mim][HgBr3] …


Ultrasound-Assisted Synthesis Of Mesoporous Β-Ni(Oh)2 And Nio Nano-Sheets Using Ionic Liquids, Tarek Alammar, Osama Shekhah, Jonas Wohlgemuth, Anja V. Mudring Jan 2012

Ultrasound-Assisted Synthesis Of Mesoporous Β-Ni(Oh)2 And Nio Nano-Sheets Using Ionic Liquids, Tarek Alammar, Osama Shekhah, Jonas Wohlgemuth, Anja V. Mudring

Anja V. Mudring

Via a facile ultrasound synthesis from nickel acetate and sodium hydroxide with ionic liquids as the solvent and template it is possible to obtain nano-β-Ni(OH)2 of various dimensionalities depending on the reaction conditions with the ionic liquid (IL) being the most important factor. Scanning electron microscopy (SEM) imaging showed β-Ni(OH)2 to form as nanosheets, nanorods and nanospheres depending on the IL. ILs with strong to moderate hydrogen bonding capability like [C3mimOH][Tf2N] (1-(3-hydroxypropyl)-3-methylimidazolium bis(trifluoromethanesulfonylamide)), [C4mim][Tf2N] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonylamide)) and [Edimim][Tf2N] (1-ethyl-2,3-diemethylimidazolium bis(trifluoromethanesulfonylamide)) lead to the formation of nanosheets whilst [Py4][Tf2N] (butyl-pyridinium bis(trifluoromethanesulfonylamide)) leads to nanoparticles and [N1888][Tf2N] (methyltrioctylammonium bis(trifluoromethanesulfonylamide)) to nanorods. Subsequent …


Thermal Conductivity Reduction Through Isotope Substitution In Nanomaterials: Predictions From An Analytical Classical Model And Nonequilibrium Molecular Dynamics Simulations, Ganesh Balasubramanian, Ishwar K. Puri, Michael C. Bohm, Frederic Leroy Jul 2011

Thermal Conductivity Reduction Through Isotope Substitution In Nanomaterials: Predictions From An Analytical Classical Model And Nonequilibrium Molecular Dynamics Simulations, Ganesh Balasubramanian, Ishwar K. Puri, Michael C. Bohm, Frederic Leroy

Ganesh Balasubramanian

We introduce an analytical model to rapidly determine the thermal conductivity reduction due to mass disorder in nanomaterials. Although this simplified classical model depends only on the masses of the different atoms, it adequately describes the changes in thermal transport as the concentrations of these atoms vary. Its predictions compare satisfactorily with nonequilibrium molecular dynamics simulations of the thermal conductivity of 14C–12C carbon nanotubes as well as with previous simulations of other materials. We present it as a simple tool to quantitatively estimate the thermal conductivity decrease that is induced by isotope substitution in various materials.


Experimental And Molecular Dynamics Investigation Into The Amphiphilic Nature Of Sulforhodamine B, Baris E. Polat, Shangchao Lin, Jonathan D. Mendenhall, Brett Vanveller, Robert Langer, Daniel Blankschtein Jan 2011

Experimental And Molecular Dynamics Investigation Into The Amphiphilic Nature Of Sulforhodamine B, Baris E. Polat, Shangchao Lin, Jonathan D. Mendenhall, Brett Vanveller, Robert Langer, Daniel Blankschtein

Brett VanVeller

Sulforhodamine B (SRB), a common fluorescent dye, is often considered to be a purely hydrophilic molecule, having no impact on bulk or interfacial properties of aqueous solutions. This assumption is due to the high water solubility of SRB relative to most fluorescent probes. However, in the present study, we demonstrate that SRB is in fact an amphiphile, with the ability to adsorb at an air/water interface and to incorporate into sodium dodecyl sulfate (SDS) micelles. In fact, SRB reduces the surface tension of water by up to 23 mN/m, and the addition of SRB to an aqueous SDS solution induces …


Electrochemical Glutamate Biosensing With Nanocube And Nanosphere Augmented Single-Walled Carbon Nanotube Networks: A Comparative Study, Jonathan C. Claussen, Mayra S. Artiles, Eric S. Mclamore, Subhashree Mohanty, Jin Shi, Jenna L. Rickus, Timothy S. Fisher, D. Marshall Porterfield Jan 2011

Electrochemical Glutamate Biosensing With Nanocube And Nanosphere Augmented Single-Walled Carbon Nanotube Networks: A Comparative Study, Jonathan C. Claussen, Mayra S. Artiles, Eric S. Mclamore, Subhashree Mohanty, Jin Shi, Jenna L. Rickus, Timothy S. Fisher, D. Marshall Porterfield

Jonathan C. Claussen

We describe two hybrid nanomaterial biosensor platforms, based on networks of single-walled carbon nanotubes (SWCNTs) enhanced with Pd nanocubes and Pt nanospheres and grown in situ from a porous anodic alumina (PAA) template. These nanocube and nanosphere SWCNT networks are converted into glutamate biosensors by immobilizing the enzyme glutamate oxidase (cross-linked with gluteraldehyde) onto the electrode surface. The Pt nanosphere/SWCNT biosensor outperformed the Pd nanocube/SWCNT biosensor and previously reported similar nanomaterial-based biosensors by amperometrically monitoring glutamate concentrations with a wide linear sensing range (50 nM to 1.6 mM) and a small detection limit (4.6 nM, 3s). These results combined with …


Effects Of Carbon Nanotube-Tethered Nanosphere Density On Amperometric Biosensing: Simulation And Experiment, Jonathan C. Claussen, James B. Hengenius, Monique M. Wickner, Timothy S. Fisher, David M. Umulis, D. Marshall Porterfield Jan 2011

Effects Of Carbon Nanotube-Tethered Nanosphere Density On Amperometric Biosensing: Simulation And Experiment, Jonathan C. Claussen, James B. Hengenius, Monique M. Wickner, Timothy S. Fisher, David M. Umulis, D. Marshall Porterfield

Jonathan C. Claussen

Nascent nanofabrication approaches are being applied to reduce electrode feature dimensions from the microscale to the nanoscale, creating biosensors that are capable of working more efficiently at the biomolecular level. The development of nanoscale biosensors has been driven largely by experimental empiricism to date. Consequently, the precise positioning of nanoscale electrode elements is typically neglected, and its impact on biosensor performance is subsequently overlooked. Herein, we present a bottom-up nanoelectrode array fabrication approach that utilizes low-density and horizontally oriented single-walled carbon nanotubes (SWCNTs) as a template for the growth and precise positioning of Pt nanospheres. We further develop a computational …


Do Surfaces With Mixed Hydrophilic And Hydrophobic Areas Enhance Pool Boiling?, Amy Rachel Betz, Jie Xu, Huihe Qiu, Daniel Attinger Oct 2010

Do Surfaces With Mixed Hydrophilic And Hydrophobic Areas Enhance Pool Boiling?, Amy Rachel Betz, Jie Xu, Huihe Qiu, Daniel Attinger

Daniel Attinger

We demonstrate that smooth and flat surfaces combining hydrophilic and hydrophobicpatterns improve pool boiling performance. Compared to a hydrophilicsurface with 7° wetting angle, the measured critical heat flux and heat transfer coefficients of the enhanced surfaces are, up to respectively, 65% and 100% higher. Different networks combining hydrophilic and hydrophobic regions are characterized. While all tested networks enhance the heat transfer coefficient, large enhancements of critical heat flux are typically found for hydrophilic networks featuring hydrophobic islands. Hydrophilic networks indeed are shown to prevent the formation of an insulating vapor layer.


Use Of A Porous Membrane For Gas Bubble Removal In Microfluidic Channels: Physical Mechanisms And Design Criteria, Jie Xu, Regis Vaillant, Daniel Attinger Oct 2010

Use Of A Porous Membrane For Gas Bubble Removal In Microfluidic Channels: Physical Mechanisms And Design Criteria, Jie Xu, Regis Vaillant, Daniel Attinger

Daniel Attinger

We demonstrate and explain a simple and efficient way to remove gas bubbles from liquid-filled microchannels, by integrating a hydrophobic porous membrane on top of the microchannel. A prototype chip is manufactured in hard, transparent polymer with the ability to completely filter gas plugs out of a segmented flow at rates up to 7.4 μl/s/mm2 of membrane area. The device involves a bubble generation section and a gas removal section. In the bubble generation section, a T-junction is used to generate a train of gas plugs into a water stream. These gas plugs are then transported toward the gas removal …


Interfacial Temperature Measurements, High-Speed Visualization And Finite-Element Simulations Of Droplet Impact And Evaporation On A Solid Surface, Rajneesh Bhardwaj, Jon P. Longtin, Daniel Attinger Sep 2010

Interfacial Temperature Measurements, High-Speed Visualization And Finite-Element Simulations Of Droplet Impact And Evaporation On A Solid Surface, Rajneesh Bhardwaj, Jon P. Longtin, Daniel Attinger

Daniel Attinger

The objective of this work is to investigate the coupling of fluid dynamics, heat transfer and mass transfer during the impact and evaporation of droplets on a heated solid substrate. A laser-based thermoreflectance method is used to measure the temperature at the solid–liquid interface, with a time and space resolution of 100 μs and 20 μm, respectively. Isopropanol droplets with micro- and nanoliter volumes are considered. A finite-element model is used to simulate the transient fluid dynamics and heat transfer during the droplet deposition process, considering the dynamics of wetting as well as Laplace and Marangoni stresses on the liquid–gas …


A Microflow Cytometer On A Chip, Joel P. Golden, Jason Kim, George P. Anderson, Nicole N. Hashemi, Peter J. Howell, Frances S. Ligler Feb 2010

A Microflow Cytometer On A Chip, Joel P. Golden, Jason Kim, George P. Anderson, Nicole N. Hashemi, Peter J. Howell, Frances S. Ligler

Nastaran Hashemi

A rapid, automated, multi-analyte Microflow Cytometer is being developed as a portable, field-deployable sensor for onsite diagnosis of biothreat agent exposure and environmental monitoring. The technology relies on a unique method for ensheathing a sample stream in continuous flow past an interrogation region where optical fibers provide excitation and collect emission. This approach efficiently focuses particles in the interrogation region of the fluidic channel, avoids clogging and provides for subsequent separation of the core and sheath fluids in order to capture the target for confirmatory assays and recycling of the sheath fluid. Fluorescently coded microspheres provide the capability for highly …


Unsteady Nanoscale Thermal Transport Across A Solid-Fluid Interface, Ganesh Balasubramanian, Soumik Banerjee, Ishwar K. Puri Sep 2008

Unsteady Nanoscale Thermal Transport Across A Solid-Fluid Interface, Ganesh Balasubramanian, Soumik Banerjee, Ishwar K. Puri

Ganesh Balasubramanian

We simulate unsteady nanoscale thermal transport at a solid-fluidinterface by placing cooler liquid-vapor Ar mixtures adjacent to warmer Fe walls. The equilibration of the system towards a uniform overall temperature is investigated using nonequilibrium molecular dynamics simulations from which the heat flux is also determined explicitly. The Ar–Fe intermolecular interactions induce the migration of fluid atoms into quasicrystallineinterfacial layers adjacent to the walls, creating vacancies at the migration sites. This induces temperature discontinuities between the solidlikeinterfaces and their neighboring fluid molecules. The interfacial temperature difference and thus the heat flux decrease as the system equilibrates over time. The averaged interfacial …


The Dissipated Power In Atomic Force Microscopy Due To Interactions With A Capillary Fluid Layer, Nicole N. Hashemi, M.R. Paul, H. Dankowicz, W. Jhe Jan 2008

The Dissipated Power In Atomic Force Microscopy Due To Interactions With A Capillary Fluid Layer, Nicole N. Hashemi, M.R. Paul, H. Dankowicz, W. Jhe

Nastaran Hashemi

We study the power dissipated by the tip of an oscillating micron-scale cantilever as it interacts with a sample using a nonlinear model of the tip-surface force interactions that includes attractive, adhesive, repulsive, and capillary contributions. The force interactions of the model are entirely conservative and the dissipated power is due to the hysteretic nature of the interaction with the capillary fluid layer. Using numerical techniques tailored for nonlinear and discontinuous dynamical systems we compute the exact dissipated power over a range of experimentally relevant conditions. This is accomplished by computing precisely the fraction of oscillations that break the fluid …


A Bubble-Powered Micro-Rotor: Conception, Manufacturing, Assembly And Characterization, Jonathan Kao, Xiaolin Wang, John Warren, Jie Xu, Daniel Attinger Dec 2007

A Bubble-Powered Micro-Rotor: Conception, Manufacturing, Assembly And Characterization, Jonathan Kao, Xiaolin Wang, John Warren, Jie Xu, Daniel Attinger

Daniel Attinger

A steady fluid flow, called microstreaming, can be generated in the vicinity of a micro-bubble excited by ultrasound. In this paper, we use this phenomenon to assemble and power a microfabricated rotor at rotation speeds as high as 625 rpm. The extractible power is estimated to be of the order of a few femtowatts. A first series of experiments with uncontrolled rotor shapes is presented, demonstrating the possibility of this novel actuation scheme. A second series of experiments with 65 µm rotors micromanufactured in SU-8 resin is then presented. Variables controlling the rotation speed and rotor stability are investigated, such …


Control And Ultrasonic Actuation Of A Gas–Liquid Interface In A Microfluidic Chip, Jie Xu, Daniel Attinger Mar 2007

Control And Ultrasonic Actuation Of A Gas–Liquid Interface In A Microfluidic Chip, Jie Xu, Daniel Attinger

Daniel Attinger

This paper describes the design and manufacturing of a microfluidic chip, allowing for the actuation of a gas–liquid interface and of the neighboring fluid. The first way to control the interface motion is to apply a pressure difference across it. In this case, the efficiency of three different micro-geometries at anchoring the interface is compared. Also, the critical pressures needed to move the interface are measured and compared to a theoretical result. The second way to control the interface motion is by ultrasonic excitation. When the excitation is weak, the interface exhibits traveling waves, which follow a dispersion equation. At …


An Experimental Study Of Molten Microdroplet Surface Deposition And Solidification: Transient Behavior And Wetting Angle Dynamics, Daniel Attinger, Z. Zhao, D. Poulikakos Apr 2000

An Experimental Study Of Molten Microdroplet Surface Deposition And Solidification: Transient Behavior And Wetting Angle Dynamics, Daniel Attinger, Z. Zhao, D. Poulikakos

Daniel Attinger

The basic problem of the impact and solidification of molten droplets on a substrate is of central importance to a host of processes. An important and novel such process in the area of micromanufacturing is solder jetting where microscopic solder droplets are dispensed for the attachment of microelectronic components. Despite the recent appearance of a few numerical studies focusing on the complex transient aspects of this process, no analogous experimental results have been reported to date to the best of our knowledge. Such a study is reported in this paper. Eutectic solder (63Sn37Pb) was melted to a preset superheat and …


The Lagrangian Spectral Relaxation Model Of The Scalar Dissipation In Homogeneous Turbulence, Rodney O. Fox Aug 1997

The Lagrangian Spectral Relaxation Model Of The Scalar Dissipation In Homogeneous Turbulence, Rodney O. Fox

Rodney O. Fox

Lagrangian pdf methods are employed to extend the spectral relaxation (SR) model of the scalar dissipation of an inert, passive scalar (1⩽Sc) in homogeneous turbulence. The Lagrangian spectral relaxation (LSR) model divides wavenumber space into a finite number (the total number depending on the Taylor-scale Reynolds numberRλ and the Schmidt number Sc) of wavenumber bands whose time constants are determined from the mean turbulent kinetic energy and instantaneous turbulent energy dissipation rate. The LSR model accounts for the evolution of the scalar spectrum (viz., pdf) from an arbitrary initial shape to its fully developed form. The effect of turbulent-frequencyfluctuations on …


On Velocity-Conditioned Scalar Mixing In Homogeneous Turbulence, Rodney O. Fox Oct 1996

On Velocity-Conditioned Scalar Mixing In Homogeneous Turbulence, Rodney O. Fox

Rodney O. Fox

Scalar mixing models are required to modelturbulent molecular mixing in full probability density function (pdf) simulations of turbulent reacting flows. Despite the existence of direct numerical simulation (DNS) data suggesting the contrary, most scalar mixing models assume that molecular mixing is independent of the instantaneous velocity, i.e., 〈D∇2φ|V,ψ〉=〈D∇2φ|ψ〉. Since in a joint velocity, composition pdf calculation the velocity is known, this assumption is unnecessary and leads to a lack of local isotropy in the scalar field. Moreover, since velocity conditioning offers a numerically tractable approach for including the effects of local anisotropy and mean velocity gradients on scalar mixing, it …


Modeling Multiple Reactive Scalar Mixing With The Generalized Iem Model, Kuochen Tsai, Rodney O. Fox Nov 1995

Modeling Multiple Reactive Scalar Mixing With The Generalized Iem Model, Kuochen Tsai, Rodney O. Fox

Rodney O. Fox

An outstanding feature of the amplitude mapping closure is its ability to relax an arbitrary initial probability density function (PDF) to a Gaussian PDF asymptotically. Due to the difficulties in computing either the analytical or numerical solution, the mapping closure has never been applied to multiple scalars with finite reaction rates. In this work, the generalized IEM (GIEM) model is combined with the mapping closure to model the molecular mixing terms in the PDF balance equation. The GIEM model assumes a linear relationship between the rates of change of the reactive scalars and an inert scalar (shadow scalar) during the …


The Spectral Relaxation Model Of The Scalar Dissipation Rate In Homogeneous Turbulence, Rodney O. Fox May 1995

The Spectral Relaxation Model Of The Scalar Dissipation Rate In Homogeneous Turbulence, Rodney O. Fox

Rodney O. Fox

A model for the effect of scalar spectral relaxation on the scalar dissipation rate of an inert, passive scalar (Sc>1) in fully developed homogeneous turbulence is presented. In the model, wave-number space is divided into a finite number [the total number depending on the turbulence Reynolds number Re, and the Schmidt number (SC)] of intermediate stages whose time constants are determined from the velocity spectrum. The model accounts for the evolution of the scalar spectrum from an arbitrary initial shape to its fully developed form and its effect on the scalar dissipation rate for finite Re, and Sc>1. …


Improved Fokker–Planck Model For The Joint Scalar, Scalar Gradient Pdf, Rodney O. Fox Jan 1994

Improved Fokker–Planck Model For The Joint Scalar, Scalar Gradient Pdf, Rodney O. Fox

Rodney O. Fox

The joint scalar, scalar gradient probability density function (PDF) of an inert nonpremixed scalar diffusing in a one-dimensional system of random-sized lamellas is investigated by numerical simulation. The form of the scalar PDF, at a given RMS value, is nearly identical to that predicted by direct numerical simulation (DNS) of scalar mixing in isotropic turbulence and the mapping closure, and the moments of both the scalar and the scalar gradient suggest that their limiting marginal PDF are Gaussian. The joint scalar, scalar gradient PDF is found to be restricted to a bounded region in the scalar-scalar gradient plane, whose form …


The Fokker–Planck Closure For Turbulent Molecular Mixing: Passive Scalars, Rodney O. Fox Jun 1992

The Fokker–Planck Closure For Turbulent Molecular Mixing: Passive Scalars, Rodney O. Fox

Rodney O. Fox

A turbulent-molecular-mixing closure for passive scalar mixing is derived based on the theory of diffusion in layerlike lamellar structures. The closure is formulated in terms of the Fokker- Planck (FP) equation (or an equivalent stochastic differential equation), and is to be employed in conjunction with the probability density function (pdf) balance equation appearing in the pdf methods for modeling turbulent reactive flows. Like the mapping closure, the FP closure predicts a limiting Gaussian pdf for the passive scalar concentration in isotropic turbulence. In addition, the FP closure models the joint pdf of the scalar concentration and the scalar gradient and …