Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Adapting To Extreme Heat: Social, Atmospheric, And Infrastructure Impacts Of Air Conditioning In Megacities - The Case Of New York City, Harold Gamarro Jan 2020

Adapting To Extreme Heat: Social, Atmospheric, And Infrastructure Impacts Of Air Conditioning In Megacities - The Case Of New York City, Harold Gamarro

Dissertations and Theses

Extreme heat events are becoming more frequent and intense in most large cities. Built-up surfaces also limit cooling mechanisms, leading to warmer conditions in cities, a phenomenon called the Urban Heat Island (UHI). This presents major challenges to reduce adverse health effects of hot weather, particularly in vulnerable populations like the elderly and low-income communities. Here we explore the overall impacts of increasing air conditioning (AC) system adoption in residences as an adaptive measure to reduce human health risks under heat waves, with New York City (NYC) as a case study. This study uses AC adoption data from the 2017 …


A Micromechanics Study On Ferroelectrics And Multiferroic Composites, Zhiming Hu Jan 2020

A Micromechanics Study On Ferroelectrics And Multiferroic Composites, Zhiming Hu

Dissertations and Theses

Two kinds of modern composites are studied in this thesis. One is ferroelectric materials, and the other is the multiferroic composites. Based upon the essential properties of these two types materials, several issues need to be considered in order to study their effective properties. For example, the microstructures of the system including the shape, size and the distribution; the phase connectivity; and the loading conditions will impact the results. First, we focus on the investigation of ferroelectrics and its composites. Based on the experimental observations, the nonlinear electromechanical coupling responses of ferroelectrics are strongly depending on the frequency of the …


Toward Closing The Urban Surface Energy Balance Using Satellite Remote Sensing, Joshua Hrisko Jan 2020

Toward Closing The Urban Surface Energy Balance Using Satellite Remote Sensing, Joshua Hrisko

Dissertations and Theses

The energy exchanges at the Earth’s surface are responsible for many of the processes that govern weather, climate, human health, and energy use. This exchange, commonly known as the surface energy balance (SEB), determines the near-surface thermodynamic state by partitioning the available energy into surface fluxes. The net all-wave radiation is often the primary energy source, while the heat storage and sensible and latent heat fluxes account for the majority of energy distributed elsewhere. While the SEB of various natural environments(trees, crops, soils) has been well-observed and modeled, the urban surface energy balance remains elusive. This is due to the …


On The Energy Sustainability Of Active And Passive Building Integrated Technologies In The Context Of A Changing Climate For Tropical Coastal Cities, Rabindra Pokhrel Jan 2020

On The Energy Sustainability Of Active And Passive Building Integrated Technologies In The Context Of A Changing Climate For Tropical Coastal Cities, Rabindra Pokhrel

Dissertations and Theses

Caribbean Sea surface temperatures have been rising at an alarming rate of 0.020C/year. The effect of rising sea surface temperatures is reflected in increasing in 2m air temperature over the Caribbean. The rise in extreme temperatures increases human discomfort and energy demands for air conditioning (AC) putting both the population and energy infrastructure at higher risk of vulnerability. This vulnerability is amplified in compact cities where anthropogenic heat removal from the built environment further increases the temperature of the urban canyon with feedback on human comfort and energy demands. Although there has been prior work reported on mitigating energy demands …


Capillary Forces And Wetting Dynamics By Diffuse-Interface Modeling, Fanny Thomas Jan 2020

Capillary Forces And Wetting Dynamics By Diffuse-Interface Modeling, Fanny Thomas

Dissertations and Theses

Wetting phenomena underlie many natural and industrial processes, from the proper functioning of the lungs to the thin coating of surfaces. The three-phase interactions involved at microscopic scales play a critical role. Adding solid particles to an emulsion, for example, can drastically change the flow behavior due to capillary bridging between the particles. The study of these three-phase systems is especially relevant to the petroleum industry, where gas hydrates forming large clusters in subsea pipelines during crude oil transportation is a major concern. The dynamics of such systems is also of great interest from a fundamental perspective. Indeed describing non-equilibrium …