Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Design, Modeling And Control Of A Two-Wheel Balancing Robot Driven By Bldc Motors, Charles T. Refvem Dec 2019

Design, Modeling And Control Of A Two-Wheel Balancing Robot Driven By Bldc Motors, Charles T. Refvem

Master's Theses

The focus of this document is on the design, modeling, and control of a self-balancing two wheel robot, hereafter referred to as the balance bot, driven by independent brushless DC (BLDC) motors. The balance bot frame is composed of stacked layers allowing a lightweight, modular, and rigid mechanical design. The robot is actuated by a pair of brushless DC motors equipped with Hall effect sensors and encoders allowing determination of the angle and angular velocity of each wheel. Absolute orientation measurement is accomplished using a full 9-axis IMU consisting of a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer. …


An Advanced Controller For A Semi-Active Wheelchair Suspension, David J. Smith Jan 2011

An Advanced Controller For A Semi-Active Wheelchair Suspension, David J. Smith

Master's Theses

An Advanced Controller for a Semi-Active Wheelchair Suspension was designed, built and tested. The suspension consisted of a Goodyear 1S3-011 air spring, IQ Valves high speed proportional solenoid valve, and a custom made accumulator. Several controller designs specific to semi-active suspensions were designed and tested. The controllers investigated were skyhook, acceleration driven damping, and a combined control law employing both a dual and single sensor version. The implementation of skyhook control suffered performance degradation from the idealization due to particular elements of hardware, however acceleration driven damping showed a marked and statistically significant improvement over skyhook control, in hardware, by …