Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Development Of An Additive Manufacturing Compression Molding Process For Low Cost In-House Prototyping, Grant Forrester Warden Jun 2018

Development Of An Additive Manufacturing Compression Molding Process For Low Cost In-House Prototyping, Grant Forrester Warden

Industrial and Manufacturing Engineering

Composite parts can be manufactured using various processes. Generally, a mix of resin and fiber is formed into the desired geometry using a mold and pressure. One process used by Dr. Joseph Mello in his research is known as compression molding. Compression molds are generally made from large billets of aluminum or stainless steel, are machined by a CNC mill, and are then hand-finished with polishes and mold preparation products. This process is expensive, requires large machinery and experienced operators, and introduces long lead times relative to the design cycle of the part being manufactured. The nature of Dr. Mello's …


Defect Detection In Selective Laser Melting, Moira Foster Jun 2018

Defect Detection In Selective Laser Melting, Moira Foster

Master's Theses

Additively manufactured parts produced using selective laser melting (SLM) are prone to defects created during the build process due to part shrinkage while cooling. Currently defects are found only after the part is removed from the printer. To determine whether cracks can be detected before a print is completed, this project developed print parameters to print a test coupon with inherent defects – warpage and cracking. Data recorded during the build was then characterized to determine when the defects occurred.

The test coupon was printed using two sets of print parameters developed to control the severity of warpage and cracking. …


Mechanical Characterization Of Selectively Laser Melted 316l Stainless Steel Body Centered Cubic Unit Cells And Lattice Of Varying Node Radii And Strut Angle, Christopher James Hornbeak Jun 2018

Mechanical Characterization Of Selectively Laser Melted 316l Stainless Steel Body Centered Cubic Unit Cells And Lattice Of Varying Node Radii And Strut Angle, Christopher James Hornbeak

Master's Theses

An experimental study of several variants of radius and strut angle of the body centered cubic unit cell was performed to determine the mechanical properties and failure mechanisms of the mesostructure. Quasi static compression tests were performed on an Instron® universal testing machine with a 50kN load cell at 0.2mm/min. The test samples were built using a SLM Solutions 125 selective laser melting machine with 316L stainless steel. Test specimens were based on 5mm cubic unit cells, with a strut diameter 10% of the unit cell size, with skins on top and bottom to provide a cantilever boundary constraint. Specimens …