Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Non-Redundant Sensor Fault Detection Using An Improved Dynamic Model, Brandon Cannon, Robert C. Leishman, Timothy W. Mclain, Joseph Jackson, Jovan Boskovic Aug 2013

Non-Redundant Sensor Fault Detection Using An Improved Dynamic Model, Brandon Cannon, Robert C. Leishman, Timothy W. Mclain, Joseph Jackson, Jovan Boskovic

Faculty Publications

This paper proposes a method of detecting faults in non-redundant sensors. Such a method is advantageous for small unmanned aerial vehicles (UAVs), which are prevented from carrying redundant sensors due to size, weight, and power constraints. The method we propose uses a multiplicative extended Kalman lter (MEKF) for estimation and employs hypothesis testing to detect faults. This method has been shown to detect bias, drift, and increased noise in a non-redundant sensor real-time on board an autonomous rotorcraft.


Robust Motion Estimation With Rgb-D Cameras, Robert C. Leishman, Daniel Koch, Timothy W. Mclain Aug 2013

Robust Motion Estimation With Rgb-D Cameras, Robert C. Leishman, Daniel Koch, Timothy W. Mclain

Faculty Publications

Estimating vehicle motion using vision sensors in real time has been greatly explored in the past few years due to speed improvements and advances in computer hardware. Six degree of freedom motion estimation using vision information is desirable due to a vision sensors low cost, low power requirements and light weight and for the quality of the solutions that can be obtained using few assumptions about the environment. However, cameras have the downside of not providing good estimates when visual features are sparse or not available. Also, there are problems with changes in lighting and when light is low or …


Inviscid Analysis Of Extended Formation Flight, James Kless, Michael Aftosmis, Andrew Ning, Marian Nemec Jul 2013

Inviscid Analysis Of Extended Formation Flight, James Kless, Michael Aftosmis, Andrew Ning, Marian Nemec

Faculty Publications

Flying airplanes in extended formations, with separation distances of tens of wingspans, significantly improves safety while maintaining most of the fuel savings achieved in close formations. The present study investigates the impact of roll trim and compressibility at a fixed lift coefficient on the benefits of extended formation flight. An Euler solver with adjoint-based mesh refinement combined with a wake propagation model is used to analyze a two-body echelon formation at a separation distance of 30 spans. Two geometries are examined: a simple wing and a wing-body geometry. Energy savings, quantified by both formation drag fraction and span efficiency factor, …


Numerical Simulation Of Convection In Triangular Cavities To Predict Solar Still Performance, Jeremy D. Lefevre, W. Jerry Bowman, Matthew R. Jones Jul 2013

Numerical Simulation Of Convection In Triangular Cavities To Predict Solar Still Performance, Jeremy D. Lefevre, W. Jerry Bowman, Matthew R. Jones

Faculty Publications

To improve modeling of solar still behavior, the convection correlations currently used need to be improved upon. Variations in operating parameters and cover geometries make it difficult to use a single correlation to describe the operation of all solar stills. In this work, three right triangles (representing covers at 15, 30, and 45 deg) were modeled, meshed, and solved to predict the convection heat transfer inside for a variety of operating conditions. For a correlation of the form Nu = C · Ran, it was found that C = 1.1, 0.60, and 0.71, and n = 0.19, 0.24, …


Floating Electrode Electrowetting On Hydrophobic Dielectric With An Sio2 Layer, Mehdi Khodayari, Benjamin Hahne, Nathan B. Crane, Alex A. Volinsky May 2013

Floating Electrode Electrowetting On Hydrophobic Dielectric With An Sio2 Layer, Mehdi Khodayari, Benjamin Hahne, Nathan B. Crane, Alex A. Volinsky

Faculty Publications

Floating electrode electrowetting is caused by dc voltage applied to a liquid droplet on the Cytop surface, without electrical connection to the substrate. The effect is caused by the charge separation in the floating electrode. A highly-resistive thermally-grown SiO2 layer underneath the Cytop enables the droplet to hold charges without leakage, which is the key contribution. Electrowetting with an SiO2 layer shows a memory effect, where the wetting angle stays the same after the auxiliary electrode is removed from the droplet in both conventional and floating electrode electrowetting. Floating electrode electrowetting provides an alternative configuration for developing advanced electrowetting-based devices.


Relative Navigation Approach For Vision-Based Aerial Gps-Denied Navigation, Robert C. Leishman, Timothy Mclain, Randal W. Beard May 2013

Relative Navigation Approach For Vision-Based Aerial Gps-Denied Navigation, Robert C. Leishman, Timothy Mclain, Randal W. Beard

Faculty Publications

GPS-denied aerial flight is a popular research topic. The problem is challenging and requires knowledge of complex elements from many distinct disciplines. Additionally, aerial vehicles can present challenging constraints such as stringent payload limitations and fast vehicle dynamics. In this paper we propose a new architecture to simplify some of the challenges that constrain GPS-denied aerial flight. At the core, the approach combines visual graph-SLAM with a multiplicative extended Kalman filter. More importantly, for the front end we depart from the common practice of estimating global states and instead keep the position and yaw states of the MEKF relative to …


Analysis Of An Improved Imu-Based Observer For Multirotor Helicopters, John Charles Macdonald, Robert C. Leishman, Randal W. Beard, Timothy W. Mclain May 2013

Analysis Of An Improved Imu-Based Observer For Multirotor Helicopters, John Charles Macdonald, Robert C. Leishman, Randal W. Beard, Timothy W. Mclain

Faculty Publications

Multirotor helicopters are increasingly popular platforms in the robotics community. Making them fully autonomous requires accurate state estimation. We review an improved dynamic model for multirotor helicopters and analyze the observability properties of an estimator based on this model. The model allows better use of IMU data to facilitate accurate state estimates even when updates from a sensor measuring position become less frequent and less accurate. We demonstrate that the position update rate can be cut in half versus typical approaches while maintaining the same accuracy. We also find that velocity estimates are at least twice as accurate no matter …


A Multiplicative Extended Kalman Filter For Relative Rotorcraft Navigation, Robert C. Leishman, Timothy W. Mclain Mar 2013

A Multiplicative Extended Kalman Filter For Relative Rotorcraft Navigation, Robert C. Leishman, Timothy W. Mclain

Faculty Publications

In this article we detail the fundamentals of a new approach to GPS-denied navigation for aerial vehicles in confined indoor environments. We depart from the common practice of navigating within a globally referenced map, and instead keep the position and yaw states relative to the current node in the map. The approach combines elements of graph SLAM with a multiplicative extended Kalman filter (MEKF). The filter provides quality state estimates at a fast rate and a graph SLAM algorithm maintains a pose graph. We provide specific details for the relative MEKF. We verify the relative estimation approach with hardware flight …


Objectives And Constraints For Wind Turbine Optimization, Andrew Ning, Rick Damiani, Patrick Moriarty Feb 2013

Objectives And Constraints For Wind Turbine Optimization, Andrew Ning, Rick Damiani, Patrick Moriarty

Faculty Publications

Efficient extraction of wind energy is a complex multidisciplinary process. This paper examines common objectives used in wind turbine optimization problems. The focus is not on the specific optimized designs, but rather on understanding when certain objectives and constraints are necessary, and what their limitations are. Maximizing annual energy production, or even using sequential aero/structural optimization, is shown to be significantly suboptimal compared to integrated aero/structural metrics. Minimizing the ratio of turbine mass to annual energy production can be effective for fixed rotor diameter designs, as long as the tower mass is estimated carefully. For variable diameter designs, the predicted …


Supercritical Co2 Brayton Cycles For Solar-Thermal Energy, Brian D. Iverson, Thomas M. Conboy, James J. Pasch, Alan M. Kruizenga Jan 2013

Supercritical Co2 Brayton Cycles For Solar-Thermal Energy, Brian D. Iverson, Thomas M. Conboy, James J. Pasch, Alan M. Kruizenga

Faculty Publications

Of the mechanisms to improve efficiency for solar-­‐thermal power plants, one of the most effective ways to improve overall efficiency is through power cycle improvements. As increases in operating temperature continue to be pursued, supercritical CO2 Brayton cycles begin to look more attractive despite the development costs of this technology. Further, supercritical CO2 Brayton has application in many areas of power generation beyond that for solar energy alone.

One challenge particular to solar-­‐thermal power generation is the transient nature of the solar resource. This work illustrates the behavior of developmental Brayton turbomachinery in response to a fluctuating thermal input, much …


Electrochemical Explanation For Asymmetric Electrowetting Response, Mehdi Khodayari, Nathan B. Crane, Alex A. Volinsky Jan 2013

Electrochemical Explanation For Asymmetric Electrowetting Response, Mehdi Khodayari, Nathan B. Crane, Alex A. Volinsky

Faculty Publications

In electrowetting, a droplet/substrate contact angle is modulated by applying a potential difference between the droplet and the substrate. Typically, the droplet potential is changed via an auxiliary electrode dipped in the droplet. Here, it is shown that electrochemical reactions lead to a potential drop on the auxiliary electrode in electrowetting, which degrades the droplet contact angle modulation. The magnitude of this effect depends on the voltage polarity. This problem can be addressed by using a dielectric layer, such as SiO2, which can prevent electrochemical reactions with the electrowetting substrate and the auxiliary electrode.


Techno- Economic Analysis Of Wastewater Biosolids Gasification, Jason M. Porter, Nick Lumley, Robert Braun, Tzahi Cath, Ana Prietro, Dotti Ramey, Greta Buschmann Jan 2013

Techno- Economic Analysis Of Wastewater Biosolids Gasification, Jason M. Porter, Nick Lumley, Robert Braun, Tzahi Cath, Ana Prietro, Dotti Ramey, Greta Buschmann

Faculty Publications

Wastewater treatment biosolids, commonly referred to as sludge, is a dilute suspension of micro-organisms, noxious organic matter, and mineral species in up to 99% water. Sludge is produced at about 250 mg/L of mixed municipal and light industrial wastewater treated. Management of this process stream can present a financial and environmental challenge for wastewater treatment plants (WWTPs), accounting for up to 15% of plant energy consumption. Operators of small urban WWTPs see the greatest challenge as their operations do not benefit from economies of scale, which permit larger facilities to absorb the costs or footprint of anaerobic digestion. This work …