Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Bidirectional Electrowetting Actuation With Voltage Polarity Dependence, Nathan B. Crane, Alex A. Volinsky, Pradeep Mishra, Ajay Rajgadkar, Mehdi Khodayari Mar 2010

Bidirectional Electrowetting Actuation With Voltage Polarity Dependence, Nathan B. Crane, Alex A. Volinsky, Pradeep Mishra, Ajay Rajgadkar, Mehdi Khodayari

Faculty Publications

This work presents an electrowetting system in which the actuation direction depends on the polarity of the applied voltage. Since electrowetting response depends on the voltage squared, it is typically independent of voltage sign to first order. However, the introduction of an electrochemicaal diode into the equivalent electrical circuit permits polarity-dependent behavior. Electrochemical diodes were created by making holes in the dielectric. The aluminum electrodes passivate and prevent current flow in one direction, creating diode-like behavior with high breakdown voltage. The resulting actuation forces were directly measured and are of comparable magnitude for both actuation directions.


Characterization Of Electrowetting Processes Through Force Measurements, Nathan B. Crane, Pradeep Mishra, Alex A. Volinsky Jan 2010

Characterization Of Electrowetting Processes Through Force Measurements, Nathan B. Crane, Pradeep Mishra, Alex A. Volinsky

Faculty Publications

A new method of characterizing electrowetting is presented in which the forces applied to a modified nanoindenter tip by a test water droplet are measured. A droplet is trapped between the flat nanoindenter tip and the test substrate containing the necessary electrodes. When voltage is applied to the electrodes in the substrate, lateral and normal forces are exerted on the tip and measured by the nanoindenter transducer. Proper selection of the tip geometry permits direct prediction of the resulting in-plane lateral forces using analytical formulas derived from the Young-Lippmann equation. Experimental results show good agreement with both analytical and numerical …