Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

A One-Dimensional Analysis Of A Microbial Fuel Cell For Efficient Acetate Removal And Power Density Output, David Rouhani May 2023

A One-Dimensional Analysis Of A Microbial Fuel Cell For Efficient Acetate Removal And Power Density Output, David Rouhani

UNLV Theses, Dissertations, Professional Papers, and Capstones

Microbial fuel cells (MFCs) are electrochemical devices that utilize microorganisms to convert organic matter into electrical energy. MFCs have been discussed to have potential application for sustainable wastewater treatment due to their ability to generate electricity while simultaneously treating contaminated water. To optimize MFC performance, numerical models can be used to understand the complex electrochemical and biological processes occurring in the system. In this study, a numerical model was developed to simulate the performance of MFCs under varying operating conditions and to investigate the performance of a MFC for treating wastewater fuel. More specifically, the MFC was modeled to oxidize …


Discrete Vortex Modeling Of Aerodynamic Flutter Of A Flat Plate With Damped Oscillations, Emma Chao May 2020

Discrete Vortex Modeling Of Aerodynamic Flutter Of A Flat Plate With Damped Oscillations, Emma Chao

UNLV Theses, Dissertations, Professional Papers, and Capstones

Aerodynamic flutter is the unstable oscillation of a body caused by the interaction of aerodynamic forces, structural elasticity, and inertial effects induced by vortex shedding. Current models of this phenomenon require finite element analysis and extensive computational power and processing time. The purpose of this study was to develop and validate a program that is faster and more efficient than existing approaches by using the discrete vortex method (DVM). By reducing the complexities of flutter to the shedding of vortices in an inviscid model of a two-dimensional flat plate with a torsional spring constant at its center, this phenomenon can …


Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu Dec 2018

Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this paper is to better understand the behavior of smoke movement in an atrium. Thus gives first responders and civilians in and out of building a better understanding

With the advancements of modern technology, computers and softwares make simulation models possible such as fire models to simulate fire and smoke movements. In this paper, a computational fluid dynamic (CFD) software Fire Dynamic Simulator (FDS) is used to conduct a series of atrium tests to investigate the effectiveness of smoke exhaust systems. FDS solves the Navier-Stokes equations appropriate for low speed flows (Ma < 0.3) with an emphasis on smoke, heat transport and CO2 concentrations from fires. The default turbulence model used in FDS simulation is the Large Eddy Simulation (LES), which is the solution of Navier-Stokes equations at low speed.

The compartment tested was 9 …


The Design, Modeling, And Optimization Of A Biomimetic Soft Robot For Fluid Pumping And Thrust Generation Using Electroactive Polymer Actuators, Zakai Jedidiah Olsen May 2018

The Design, Modeling, And Optimization Of A Biomimetic Soft Robot For Fluid Pumping And Thrust Generation Using Electroactive Polymer Actuators, Zakai Jedidiah Olsen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Nature is a constant source of inspiration for engineers and scientists through its simple, effective, and elegant solutions to many complex problems. Smart materials and soft robotics have been seen to be particularly well suited for developing biomimetic devices and are active fields of research. In this study, the design, modeling, and optimization of a new biomimetic soft robot is described. Preliminary work was made in the modeling of a biomimetic robot based on the locomotion and kinematics of jellyfish. Modifications were made to the governing equations for jellyfish locomotion that accounted for geometric differences between biology and the robotic …


Characterization Of Impact Properties Of Forged, Layered, And Additive Manufactured Titanium Alloy, Melissa Kathryn Matthes Aug 2016

Characterization Of Impact Properties Of Forged, Layered, And Additive Manufactured Titanium Alloy, Melissa Kathryn Matthes

UNLV Theses, Dissertations, Professional Papers, and Capstones

New additive manufactured (AM) materials have the potential of optimizing the geometry and microstructure of complex components to enhance their structural integrity while creating them quickly. However, the behavior of AM materials under extreme dynamic loading conditions is not fully understood. This is especially important in many applications. For example, spacecraft components may be impacted by micrometeorites at hyper velocities of multiple kilometers per second, inducing extreme dynamic loading.

One type of AM material is created by melting and solidifying metal along a specified path. Depending on the geometry, additional streams will be deposited side-by-side. This process affects the microstructure …