Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

The Essential Work Of Fracture In Peridynamics, Christer Stenström, Kjell Eriksson, Florin Bobaru, Stefan Golling, Pär Jonsén Jul 2023

The Essential Work Of Fracture In Peridynamics, Christer Stenström, Kjell Eriksson, Florin Bobaru, Stefan Golling, Pär Jonsén

Department of Mechanical and Materials Engineering: Faculty Publications

In this work, the essential work of fracture (EWF) method is introduced for a peridynamic (PD) material model to characterize fracture toughness of ductile materials. First, an analytical derivation for the path-independence of the PD J -integral is provided. Thereafter, the classical J -integral and PD J-integral are computed on a number of analytical crack problems, for subsequent investigation on how it performs under large scale yielding of thin sheets. To represent a highly nonlinear elastic behavior, a new adaptive bond stiffness calibration and a modified bonddamage model with gradual softening are proposed. The model is employed for two …


Interfaces In Dynamic Brittle Fracture Of Pmma: A Peridynamic Analysis, Longzhen Wang, Javad Mehrmashhadi, Florin Bobaru Jan 2023

Interfaces In Dynamic Brittle Fracture Of Pmma: A Peridynamic Analysis, Longzhen Wang, Javad Mehrmashhadi, Florin Bobaru

Department of Mechanical and Materials Engineering: Faculty Publications

Recent experiments in bonded PMMA layers have shown dramatic changes in dynamic crack growth characteristics depending on the interface location and toughness. In this paper we present a peridynamic (PD) analysis of this phenomenon and determine three elements that are essential in a model reproducing the observed fracture behavior: (1) softening near the crack tip to account for changes in PMMA due to heat-generation induced by the high strain rates reached around the crack tip in dynamic fracture; (2) independent extension (mode I) and shear (mode II) modes of fracture; (3) a two-parameter fracture model, which matches both strength and …


Peridynamic Simulation Of Elastic Wave Propagation By Applying The Boundary Conditions With The Surface Node Method, Francesco Scabbia, Mirco Zaccariotto, Ugo Galvanetto, Florin Bobaru Jan 2023

Peridynamic Simulation Of Elastic Wave Propagation By Applying The Boundary Conditions With The Surface Node Method, Francesco Scabbia, Mirco Zaccariotto, Ugo Galvanetto, Florin Bobaru

Department of Mechanical and Materials Engineering: Faculty Publications

Peridynamics is a novel nonlocal theory able to deal with discontinuities, such as crack initiation and propagation. Near the boundaries, due to the incomplete nonlocal region, the peridynamic surface effect is present, and its reduction relies on using a very small horizon, which ends up being expensive computationally. Furthermore, the imposition of nonlocal boundary conditions in a local way is often required. The surface node method has been proposed to solve both the aforementioned issues, providing enhanced accuracy near the boundaries of the body. This method has been verified in the cases of quasi-static elastic problems and diffusion problems evolving …


Construction Of A Peridynamic Model For Viscous Flow, Jiangming Zhao, Adam Larios, Florin Bobaru Ph.D. Jan 2022

Construction Of A Peridynamic Model For Viscous Flow, Jiangming Zhao, Adam Larios, Florin Bobaru Ph.D.

Department of Mechanical and Materials Engineering: Faculty Publications

We derive the Eulerian formulation for a peridynamic (PD) model of Newtonian viscous flow starting from fundamental principles: conservation of mass and momentum. This formulation is different from models for viscous flow that utilize the so-called “peridynamic differential operator” with the classical Navier- Stokes equations. We show that the classical continuity equation is a limiting case of the PD one, assuming certain smoothness conditions. The PD model for viscous flow is calibrated to the classical Navier-Stokes equations by enforcing linear consistency for the viscous stress term. Couette and Poiseuille flows, and incompressible fluid flow past a regular lattice of cylinders …


Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen Jan 2019

Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen

Department of Mechanical and Materials Engineering: Faculty Publications

In this work, the peridynamic corrosion model is used for 3D simulation of pitting corrosion in stainless steel. Models for passivation and salt layer formation are employed to predict detailed characteristics of pit growth kinetic in stainless steels, such as lacy cover formation on top of the pit, and the diffusion-controlled regime at the pit bottom. The model is validated against an experimentally grown pit on 316L stainless steel in NaCl solution. Lacy covers in this model are formed autonomously during the simulation process. They are remarkably similar to the covers observed on top of the real pits.


Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen Jan 2019

Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen

Department of Mechanical and Materials Engineering: Faculty Publications

In this work, the peridynamic corrosion model is used for 3D simulation of pitting corrosion in stainless steel. Models for passivation and salt layer formation are employed to predict detailed characteristics of pit growth kinetic in stainless steels, such as lacy cover formation on top of the pit, and the diffusion-controlled regime at the pit bottom. The model is validated against an experimentally grown pit on 316L stainless steel in NaCl solution. Lacy covers in this model are formed autonomously during the simulation process. They are remarkably similar to the covers observed on top of the real pits.


Peridynamic Modeling Of Dynamic Fracture In Bio-Inspired Structures For High Velocity Impacts, Sneha Akula May 2018

Peridynamic Modeling Of Dynamic Fracture In Bio-Inspired Structures For High Velocity Impacts, Sneha Akula

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Bio-inspired damage resistant models have distinct patterns like brick-mortar, Voronoi, helicoidal etc., which show exceptional damage mitigation against high-velocity impacts. These unique patterns increase damage resistance (in some cases up to 3000 times more than the constituent materials) by effectively dispersing the stress waves produced by the impact. Ability to mimic these structures on a larger scale can be ground-breaking and could be used in numerous applications. Advancements in 3D printing have now made possible fabrication of these patterns with ease and at a low cost. Research on dynamic fracture in bio-inspired structures is very limited but it is …