Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Maximizing And Modeling Malonyl-Coa Production In Escherichia Coli, Tatiana Thompson Silveira Mello Jun 2019

Maximizing And Modeling Malonyl-Coa Production In Escherichia Coli, Tatiana Thompson Silveira Mello

LSU Master's Theses

In E. coli, fatty acid synthesis is catalyzed by the enzyme acetyl-CoA carboxylase (ACC), which converts acetyl-CoA into malonyl-CoA. Malonyl-CoA is a major building block for numerous of bioproducts. Multiple parameters regulate the homeostatic cellular concentration of malonyl-CoA, keeping it at a very low level. Understanding how these parameters affect the bacterial production of malonyl-CoA is fundamental to maximizing it and its bioproducts. To this end, competing pathways consuming malonyl-CoA can be eliminated, and optimal nutritional and environmental conditions can be provided to the fermentation broth. Most previous studies utilized genetic modifications, expensive consumables, and high-cost quantification methods, making …


Synthetic Spider Silk Sustainability Verification By Techno-Economic And Life Cycle Analysis, Alan Edlund May 2016

Synthetic Spider Silk Sustainability Verification By Techno-Economic And Life Cycle Analysis, Alan Edlund

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Major ampullate spider silk represents a promising biomaterial with diverse commercial potential ranging from textiles to medical devices due to the excellent physical and thermal properties from the protein structure. Recent advancements in synthetic biology have facilitated the development of recombinant spider silk proteins from Escherichia coli (E. coli), alfalfa, and goats. This study specifically investigates the economic feasibility and environmental impact of synthetic spider silk manufacturing. Pilot scale data was used to validate an engineering process model that includes all of the required sub-processing steps for synthetic fiber manufacture: production, harvesting, purification, drying, and spinning. Modeling was constructed modularly …