Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Acoustics

Theses/Dissertations

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 34

Full-Text Articles in Mechanical Engineering

Comparison Of Conventional And Adaptive Acoustic Beamforming Algorithms Using A Tetrahedral Microphone Array In Noisy Environments, Megan Brittany Ewers Mar 2024

Comparison Of Conventional And Adaptive Acoustic Beamforming Algorithms Using A Tetrahedral Microphone Array In Noisy Environments, Megan Brittany Ewers

Dissertations and Theses

In situ acoustic measurements are often plagued by interfering sound sources that occur within the measurement environment. Both adaptive and conventional beamforming algorithms, when applied to the outputs of a microphone array arranged in a tetrahedral geometry, are able to capture sound sources in desired directions and reject sound from unwanted directions. Adaptive algorithms may be able to measure a desired sound source with greater spatial precision, but require more calculations and, therefore, computational power. A conventional frequency-domain phase-shift algorithm and a modified adaptive frequency-domain Minimum Variance Distortionless Response (MVDR) algorithm were applied to simulated and recorded signals from a …


Thermoacoustic Refrigerator, Rees Phillip Verleur, Colleen Farrell Mccandless, Anders Matthew Bjork, Yashraj Ashwinkumar Solanki Jun 2023

Thermoacoustic Refrigerator, Rees Phillip Verleur, Colleen Farrell Mccandless, Anders Matthew Bjork, Yashraj Ashwinkumar Solanki

Mechanical Engineering

In the Thermoacoustic Refrigerator Cal Poly Mechanical Engineering senior project, we designed, built, and tested a thermoacoustic refrigeration system which achieved an average temperature difference of 11.0°C. Our system consists of a resonator tube with an instrumented stack, mounted onto a base with a speaker and amplifier. An external power supply and function generator provide the power and signal to the system, and a thermocouple reader displays the temperature of the top and bottom of the stack. The system consistently achieved a significant temperature difference between the two ends of the stack in various ambient conditions, and it was quick …


Jet Engine Emissions And Vapor Contrail Reduction Through Increased Combustion Efficiency With The Aim To Mitigate Greenhouse Gases Emissions, Austin J. Brant Apr 2022

Jet Engine Emissions And Vapor Contrail Reduction Through Increased Combustion Efficiency With The Aim To Mitigate Greenhouse Gases Emissions, Austin J. Brant

Honors College Theses

As society continues to globalize and advance in complexity, the increased demand for business aviation has caused the global travel rate of airlines to increase with each year. With this continual increase in aviation travel, the Federal Aviation Administration (FAA) predicts that the fuel consumption rate is to increase by 1.6 percent as of the year 2025. While this increase in fuel consumption is a positive trait of a thriving aviation community, concerns also arise regarding increased greenhouse gas emissions and enlarged contributions to the greenhouse effect. The most prevalent greenhouse gases associated with jet engine emissions are water vapor, …


Characterization Of Hydraulic Flow Noise Induced By Spool Valves, Carter A. Paprocki Jan 2022

Characterization Of Hydraulic Flow Noise Induced By Spool Valves, Carter A. Paprocki

Dissertations, Master's Theses and Master's Reports

The purpose of the hydraulic flow noise research was to investigate the relationship between operational valve parameters and flow noise generation. The primary consideration was correlating the flow noise generated by the valve with the distinct valve open positions. This data would allow future valve designs to account for features that cause increased flow noise and move those features away from high flow valve displacements. By implementing this, companies would be able to design quieter hydraulic systems that will not expose operators to the current levels of sound found on machines. The experiments were conducted using two valves with different …


A Dynamic Active Noise Control System For Live Music Attenuation, Elliot James Krueger Jan 2021

A Dynamic Active Noise Control System For Live Music Attenuation, Elliot James Krueger

Graduate Research Theses & Dissertations

This thesis proposes a system design that will be suitable for applying active noise control (ANC) effectively to live musical instruments. The design consists of three parts: a signal separation section, an instrument classification section, and the active noise control section. The signal separation section will split up the music signals. The instrument classification section will identify the signals, and the ANC section will attenuate the music signal based on the previous information from the other sections. The two instruments of focus will be the trombone and tuba for their low frequency and ability to be quite loud in a …


A Study Of The Aeroacoustics Of Swept Propellers For Small Unmanned Aerial Vehicles, Arthur David Wiedemann Apr 2020

A Study Of The Aeroacoustics Of Swept Propellers For Small Unmanned Aerial Vehicles, Arthur David Wiedemann

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, small unmanned aerial vehicles (UAVs) have increased in availability and use in both public and commercial sectors. This increased use of small UAVs or “drones” has the unfortunate consequence of introducing excessive noise into communities where they operate. Implementation of noise reduction methods is necessary if we wish to see expanded use of drones in public areas. With electric propulsion, the primary source of noise is the rotor/propeller used in contemporary multi-rotor configurations. In this thesis, the aerodynamics and acoustic behavior of various swept propellers is examined with computational and experimental methods.

A family of propeller geometries …


Maximizing Bass Reflex System Performance Through Optimization Of Port Geometry, Bryce Doll Jan 2020

Maximizing Bass Reflex System Performance Through Optimization Of Port Geometry, Bryce Doll

Honors Undergraduate Theses

A bass-reflex system is a type of loudspeaker design that uses a port or a vent to improve low-frequency performance. The port acts as a Helmholtz resonator which extends the bass response of the system. However, at high drive levels, the air inside the port can become turbulent and cause distortion, noise, and compression. From previous works, it is known that the geometry of the port plays a crucial role in reducing these unwanted effects. This paper serves to provide more insight into optimal port shape by performing several objective tests on a group of 5 different prototype port shapes …


Acoustic Design Optimization With Isogeometric Analysis And Differential Evolution, Garrett W. Dodgen Dec 2019

Acoustic Design Optimization With Isogeometric Analysis And Differential Evolution, Garrett W. Dodgen

Mechanical Engineering Theses

The objective of this study is to utilize shape optimization to enhance the performance of devices relying on acoustic wave propagation. Particularly, the shape of a horn speaker and an acoustic energy harvester were optimized to enhance their performance at targeted frequencies. High order Isogeometric Analysis (IGA) was performed to estimate the acoustic pressure with minimum geometry and pollution errors [1]. The analysis platform was then combined with Differential Evolution (DE) to optimize the geometry of the horn speaker and energy harvester at a given frequency. These cases effectively demonstrate two applications of Isogeomtric shape optimization for devices relying on …


Extending The Bandwidth Of Intensity-Based Sound Power Estimates, Michael C. Mortenson Oct 2019

Extending The Bandwidth Of Intensity-Based Sound Power Estimates, Michael C. Mortenson

Undergraduate Honors Theses

Sound power is often measured using the intensity-based engineering standard ANSI S12.12-1992:R2017. Traditional methods for intensity-based sound power estimation are limited in bandwidth at low frequencies by phase mismatch between microphones and at high frequencies by microphone spacing—with errors occurring well below the spatial Nyquist frequency. The Phase and Amplitude Gradient Estimation (PAGE) method has been used to extend the bandwidth of intensity calculations [1]. This thesis examines the efficacy of the PAGE method in overcoming bandwidth limitations in estimating sound power. Specifically, the sound fields from three sources—a blender, vacuum cleaner, and reference sound source—were measured according to ANSI …


Less-Than-Lethal Self Defense Device With An Acoustic Element, Anthony Taibi Apr 2019

Less-Than-Lethal Self Defense Device With An Acoustic Element, Anthony Taibi

KSU Journey Honors College Capstones and Theses

This creative capstone project involves the conception, design, and creation of a less-than-lethal self defense device with an integrated sound board to control the acoustic element. Theoretically, this device is capable of deterring potential threats without causing any serious harm or any long-term damage. When starting this project, I was very focused on sonic warfare, and how to harness the power of ultrasonic and infrasonic sound waves to subdue to target; however, I concluded that using resonant frequencies to deter a human being is too dangerous, expensive, and can have negative effects for the user of the device if used …


Comparative Study And Design Of Economical Sound Intensity Probe, Karan Gundre Jan 2019

Comparative Study And Design Of Economical Sound Intensity Probe, Karan Gundre

Dissertations, Master's Theses and Master's Reports

The theory of sound intensity measurement using the two-microphone method was first developed in the late 1970s. Even though the measurements were limited by the technology of the time, the theory was straight-forward and considerable attention was given to improving precision during testing or post-processing. With the development of modern equipment, however, the focus shifted to the apparatus. The commercial intensity probes available today have microphones that are already phase-matched. This eliminates the need for correction during or post-testing as a majority of the errors are minimized before any data is even collected. Although such intensity probes facilitate taking precise …


Optimization Of Acoustic Soundboard Through Modal Analysis And Material Selection, Noah C. Nicholas, Cody Gruber, Nicholas Hartman Jan 2017

Optimization Of Acoustic Soundboard Through Modal Analysis And Material Selection, Noah C. Nicholas, Cody Gruber, Nicholas Hartman

Williams Honors College, Honors Research Projects

The purpose of this design project was to determine if it is plausible to design an acoustic top plate assembly made of a non-traditional material which is equivalent in sound quality to that of a standard wooden guitar. Since wood must be crafted by skilled luthiers, the overall cost of producing the completed product is fairly high. To reduce the cost of a finished acoustic guitar, we proposed to alter the material to that of one that is easier to manufacture, such as plastics and composites.

Based on our research, our team chose to test both ABS plastic and carbon …


Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares Dec 2016

Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares

Open Access Dissertations

In this work, the ability to use high frequency mechanical excitation to generate significant heating within plastic bonded explosives, as well as single energetic particles embedded within a viscoelastic binder, is studied. In this work, the fundamental mechanisms associated with the conversion of high-frequency mechanical excitation to heat as applied to these composite energetic systems are thoroughly investigated.

High-frequency contact excitation has been used to generate a significant amount of heat within samples of PBX 9501 and representative inert mock materials. Surface temperature rises on the order of 10 °C were observed at certain frequencies over a range from 50 …


Development Of The Compact Jet Engine Simulator From Concept To Useful Test Rig, Henry H. Haskin Jul 2016

Development Of The Compact Jet Engine Simulator From Concept To Useful Test Rig, Henry H. Haskin

Mechanical & Aerospace Engineering Theses & Dissertations

Two Compact Jet Engine Simulator (CJES) units were designed for integrated wind tunnel acoustic experiments involving a Hybrid Wing Body (HWB) vehicle. To meet the 5.8% scale of the HWB model, Ultra Compact Combustor technology from the Air Force Research Laboratory was used. The CJES units were built and integrated with a control system in the NASA Langley Low Speed Aero acoustic Wind Tunnel. The combustor liners, plug—vane and flow conditioner components were built in-house at Langley Research Center. The operation of the CJES units was mapped and fixes found for combustor instability tones and rig flow noise. The original …


Evaluation Of Angular Distribution Of Incident Field At The Transmission Loss Window In Michigan Tech’S Reverberant Chamber, Abhishek Thyagarajan Jan 2016

Evaluation Of Angular Distribution Of Incident Field At The Transmission Loss Window In Michigan Tech’S Reverberant Chamber, Abhishek Thyagarajan

Dissertations, Master's Theses and Master's Reports

Transmission Loss prediction accuracy is highly dependent on a good understanding of the angular distribution of incident field on the panel. Traditionally, the incident field has been assumed to be either completely random (equal probability of incidence at all angles from 0° - 90°) or field incidence (where the field is assumed to be completely diffuse between 0° - 78°). Studies1-3 have shown that these models are not completely representative of the incident field. This incident field is studied in the Michigan Tech Transmission Loss suite using two different methods in this study; beamforming and acoustic intensity. The beamforming method …


Analysis Of Vibroacoustic Properties Of Dimpled Beams Using A Boundary Value Model, Kyle R. Myers Jun 2015

Analysis Of Vibroacoustic Properties Of Dimpled Beams Using A Boundary Value Model, Kyle R. Myers

Dissertations

Attention has been given recently to the use of dimples as a means of passively altering the vibroacoustic properties of structures. Because of their geometric complexity, previous studies have modeled dimpled structures using the finite element method. However, the dynamics of dimpled structures are not completely understood. The goal of this study is to provide a better understanding of these structures through the development of a boundary value model (BVM) using Hamilton's Variational Principle. The focus of this study is on dimpled beams, which represent the simplest form of a dimpled structure.

A general model of a beam with N …


The Icon Horn Loudspeaker, Vincent Phan Nov 2014

The Icon Horn Loudspeaker, Vincent Phan

Mechanical Engineering

A horn loudspeaker in layperson terms is essentially taking a megaphone and integrating it into a standard speaker. Similar to a cheerleader yelling into a megaphone, the horn loudspeaker will amplify the sound from the speaker with no additional power needed. Using standard speaker horn theory, the geometry of the “megaphone” can be engineered to tune the acoustic performance tailored to loudness and/or specific acoustics frequencies. The horn contours are similar to traditional orchestra instruments such as the French horn, trumpet, and tuba. The iconic beauty of a horn married with the quantitative engineering theory creates an aesthetic yet functional …


Low Cost Flow Sensing For Field Sprayers, Yue Zhang Jan 2014

Low Cost Flow Sensing For Field Sprayers, Yue Zhang

Theses and Dissertations--Biosystems and Agricultural Engineering

Precisely measuring the flow rate in sprayers is a key technology to precision agriculture. With the development of advanced technologies, the demand for the ability to measure flow rate of individual nozzle has become more important and urgent.

This paper investigates the possibility of developing a low-cost flow rate measurement technique. The technique is based on analyzing the acoustic signal from a microphone placed near the nozzle tip. A comparison between acoustic signal and vibration signal was made to study the relations between them. Then several possible locations of the microphone for measuring flow rate were tested and compared, and …


The Water Entry Of Slender Axisymmetric Bodies: Forces, Trajectories And Acoustics, Kyle Gordon Bodily Jul 2013

The Water Entry Of Slender Axisymmetric Bodies: Forces, Trajectories And Acoustics, Kyle Gordon Bodily

Theses and Dissertations

Free surface water entry of various objects has been studied using high-speed images and image processing techniques for decades. This thesis studies the forces, velocities, and trajectories of slender axisymmetric projectiles using an embedded inertial measurement unit (IMU). Three nose shapes (cone, ogive, and flat) were used in the study. Additionally, the projectiles were tested at vertical and oblique impact angles with different surface conditions. One-half of each projectile was coated down the centerline with a hydrophobic spray, creating a half hydrophobic, half hydrophilic case. The trajectory of this half-and-half case impacting vertically was compared to the trajectory of symmetrically …


Fluid-Structure Interactions With Flexible And Rigid Bodies, David J. Daily May 2013

Fluid-Structure Interactions With Flexible And Rigid Bodies, David J. Daily

Theses and Dissertations

Fluid structure interactions occur to some extent in nearly every type of fluid flow. Understanding how structures interact with fluids and visa-versa is of vital importance in many engineering applications. The purpose of this research is to explore how fluids interact with flexible and rigid structures. A computational model was used to model the fluid structure interactions of vibrating synthetic vocal folds. The model simulated the coupling of the fluid and solid domains using a fluid-structure interface boundary condition. The fluid domain used a slightly compressible flow solver to allow for the possibility of acoustic coupling with the subglottal geometry …


Reverse Engineering The Structural And Acoustic Behavior Of A Stradivari Violin, Michael A. Pyrkosz Jan 2013

Reverse Engineering The Structural And Acoustic Behavior Of A Stradivari Violin, Michael A. Pyrkosz

Dissertations, Master's Theses and Master's Reports - Open

There is a tremendous amount of mystery that surrounds the instruments of Antonio Stradivari. There have been many studies done in the past, but no one completely understands exactly how he made his instruments, or why they are still considered the best in the world. This project is designed to develop an engineering model of one of Stradivari's violins that will accurately simulate the structural and acoustic behavior of the instrument. It also hopes to shine some light on what makes the instruments of Stradivari unique when compared to other violins. It will focus on geometry and material properties, utilizing …


Developing A System For Blind Acoustic Source Localization And Separation, Raghavendra Kulkarni Jan 2013

Developing A System For Blind Acoustic Source Localization And Separation, Raghavendra Kulkarni

Wayne State University Theses

This dissertation presents innovate methodologies for locating, extracting, and separating multiple incoherent sound sources in three-dimensional (3D) space; and applications of the time reversal (TR) algorithm to pinpoint the hyper active neural activities inside the brain auditory structure that are correlated to the tinnitus pathology. Specifically, an acoustic modeling based method is developed for locating arbitrary and incoherent sound sources in 3D space in real time by using a minimal number of microphones, and the Point Source Separation (PSS) method is developed for extracting target signals from directly measured mixed signals. Combining these two approaches leads to a novel technology …


Finite Element Modeling And Design Of Honeycomb Sandwich Panels For Acoustic Performance, David Griese May 2012

Finite Element Modeling And Design Of Honeycomb Sandwich Panels For Acoustic Performance, David Griese

All Theses

Honeycomb cellular metamaterial structures offer many distinct advantages over homogenous materials because their effective material properties depend on both their constituent material properties and their geometric cell configuration. From this, a wide range of targeted effective material properties can be achieved thus supporting forward design by tailoring the honeycomb cellular materials and properties for specific applications. One area that has not been fully explored is the set of acoustic properties of honeycomb materials and how these can offer increased design flexibility when targeting acoustic performance. Understanding these relations, the designer can effectively tune designs to perform better in specific acoustic …


Dolphin Sound Production And Distribution On The West Florida Shelf, Peter Simard Jan 2012

Dolphin Sound Production And Distribution On The West Florida Shelf, Peter Simard

USF Tampa Graduate Theses and Dissertations

This dissertation is an investigation of dolphin sound production and distribution off west central Florida. Although a wealth of information exists on the production of common sounds (whistles, echolocation) made by captive, trained dolphins, far less is known about free-ranging dolphin sound production and of unusual sounds. In addition, while inshore dolphin populations or communities are the subjects of research projects in many locations, dolphins in offshore waters are less commonly studied. The objectives of this dissertation were to contribute information on free-ranging dolphin sounds and continental shelf dolphin distribution.

While echolocation has been rigorously studied in captive, trained dolphins, …


Simulation Of Whistle Noise Using Computational Fluid Dynamics And Acoustic Finite Element Simulation, Jiawei Liu Jan 2012

Simulation Of Whistle Noise Using Computational Fluid Dynamics And Acoustic Finite Element Simulation, Jiawei Liu

Theses and Dissertations--Mechanical Engineering

The prediction of sound generated from fluid flow has always been a difficult subject due to the nonlinearities in the governing equations. However, flow noise can now be simulated with the help of modern computation techniques and super computers. The research presented in this thesis uses the computational fluid dynamics (CFD) and the acoustic finite element method (FEM) in order to simulate the whistle noise caused by vortex shedding. The acoustic results were compared to both analytical solutions and experimental results to better understand the effects of turbulence models, fluid compressibility, and wall boundary meshes on the acoustic frequency response. …


Analytical Comparison Of Multimicrophone Probes In Measuring Acoustic Intensity, Curtis P. Wiederhold Aug 2011

Analytical Comparison Of Multimicrophone Probes In Measuring Acoustic Intensity, Curtis P. Wiederhold

Theses and Dissertations

In the late 1970s, a method was developed to estimate acoustic intensity in one dimension by taking the cross-spectral density of two closely-spaced microphone signals. Since then, multimicrophone probes have been developed to measure three-dimensional intensity as well as energy density. Their usefulness has led to the design of various types of multimicrophone probes, the most common being the four-microphone orthogonal, the four-microphone regular tetrahedron, and the six-microphone designs. These designs generally either consist of microphones suspended in space near each other or mounted on the surface of a sphere. This work analytically compares the relative merits of each probe …


The Effect Of Static Pressure On The Inertial Cavitation Threshold And Collapse Strength, Kenneth Bryan Bader Jan 2011

The Effect Of Static Pressure On The Inertial Cavitation Threshold And Collapse Strength, Kenneth Bryan Bader

Electronic Theses and Dissertations

The amplitude of the acoustic pressure required to nucleate a gas and/or vapor bubble in a fluid, and to have that bubble undergo an inertial collapse, is termed the inertial cavitation threshold. The hydrostatic dependence of the inertial cavitation threshold was measured up to 30 MPa in ultrapure water using a high quality factor spherical resonator. The threshold increased linearly with the hydrostatic pressure and was found to be temperature dependent. The strength of the bubble collapse at the threshold was measured in terms of shock waves and light emissions. The shock amplitudes increased linearly with the hydrostatic pressure, while …


Scanning Laser Registration And Structural Energy Density Based Active Structural Acoustic Control, Daniel Alan Manwill Dec 2010

Scanning Laser Registration And Structural Energy Density Based Active Structural Acoustic Control, Daniel Alan Manwill

Theses and Dissertations

To simplify the measurement of energy-based structural metrics, a general registration process for the scanning laser doppler vibrometer (SLDV) has been developed. Existing registration techniques, also known as pose estimation or position registration, suffer from mathematical complexity, instrument specificity, and the need for correct optimization initialization. These difficulties have been addressed through development of a general linear laser model and hybrid registration algorithm. These are applicable to any SLDV and allow the registration problem to be solved using straightforward mathematics. Additionally, the hybrid registration algorithm eliminates the need for correct optimization initialization by separating the optimization process from solution selection. …


Improved Measurement And Separation Techniques For Interior Near-Field Acoustical Holography, Zachary A. Collins Nov 2010

Improved Measurement And Separation Techniques For Interior Near-Field Acoustical Holography, Zachary A. Collins

Theses and Dissertations

Recent advances in near-field acoustical holography (NAH) have expanded the theory to interior spaces where multiple sources and/or reflections are present. In 1990, Tamura presented the spatial Fourier transform separation method to measure the reflection coefficient at oblique angles using two measurement planes in the wave number domain. This paper adapts the spatial Fourier transform separation method for application in interior NAH. A practical exploration of important experimental parameters is performed, which include the relative amplitudes of primary and disturbing sources, the measurement plane separation distance, and an acceptable noise floor. This technique is successfully applied in a reverberant environment …


Elastic And Magnetic Properties Of Tb6fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy., David Michael Mccarthy Aug 2010

Elastic And Magnetic Properties Of Tb6fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy., David Michael Mccarthy

Masters Theses

Tb6FeSb2 and Tb6FeBi2 are novel rare earth compounds with little prior research. These compounds show high and variable curie temperatures for rare-earth compounds. This has lead to a literature review which includes the discussion of: elasticity, resonance, and magnetism. This review is used to discuss the theory and methodology which can relate these various properties to each other. Furthermore, synthesis, x-ray analysis, and RUS sample preparation of Tb6FeSb2 and Tb6FeBi2 were completed.

Resonant Ultrasound Spectroscopy (RUS) elastic studies were taken for Tb6FeSb2 and Tb6FeBi2 as a function temperature from 5-300K, in various magnetic fields ranging from 0-9T. Tb6FeSb2’s and Tb6FeBi2’s …