Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

ANSYS

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 16 of 16

Full-Text Articles in Mechanical Engineering

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


Coaxial Beam Eaxle Modeling And Analysis For Gawr Limits, Alexander Cebriak, Jackson Foster, Chris James Jan 2023

Coaxial Beam Eaxle Modeling And Analysis For Gawr Limits, Alexander Cebriak, Jackson Foster, Chris James

Williams Honors College, Honors Research Projects

The goal of this project was to design three different models of a coaxial beam eAxle for a range of electric vehicles. The requirement was to satisfy three different loading conditions, each characterized by a GAWR. These three loading conditions were 3000lb, 7500lb, and 10,000lb. This was done by first creating a model based on a basic outline given by Schaeffler. This model was then analyzed using Ansys®, and then iterated upon by designing new models using the 3D design program Solidworks. The iteration process was continued using more Ansys® analysis, as well as calculations to determine things like bolt …


Thermal Modeling And Analysis Of Roadway Embedded Wireless Power Transfer Modules, Arden N. Barnes Aug 2020

Thermal Modeling And Analysis Of Roadway Embedded Wireless Power Transfer Modules, Arden N. Barnes

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Wireless charging of electric vehicles is a developing technology which potentially increases efficiency and safety. It also allows for charging vehicles while they are moving by having charging stations embedded in the roadway. Because roadways are thermally insulating, it is important to know how the heat from the charging stations will move through the roadway, which will allow further research into whether the heat will cause damage to the components in the station or to the roadway. This thesis studies the way the heat moves through concrete with wireless charging coils embedded in it. This is accomplished by measuring the …


Transportation Analysis And Related Design Optimization Of The Fermilab High-Beta 650 Mhz Cryomodule, Josh F. Helsper Jan 2020

Transportation Analysis And Related Design Optimization Of The Fermilab High-Beta 650 Mhz Cryomodule, Josh F. Helsper

Graduate Research Theses & Dissertations

The Proton Improvement Plan-II (PIP-II) at Fermi National Accelerator Laboratory(FNAL) will create a new and vastly improved accelerator, which will be the source of high energy particles for the experiments taking place at FNAL. The new linear accelerator (LINAC) contains several types of cryomodules, which are individual particle accelerators. The last cryomodule in the LINAC will be the High-Beta 650 (HB650), which will operate at 650 MHz. Each module is approximately 15 meters in length, 1.5 meters wide, weighs 13 tonnes, and shares many design features with three of the other cryomodules. The HB650 consists of two primary sections, the …


Strain-Based Mechanical Failure Analysis Of Buried Steel Pipeline Subjected To Landslide Displacement Using Finite Element Method, Sean Goodluck Mamuzo Edeki Jan 2020

Strain-Based Mechanical Failure Analysis Of Buried Steel Pipeline Subjected To Landslide Displacement Using Finite Element Method, Sean Goodluck Mamuzo Edeki

Electronic Theses and Dissertations

Landslide displacement is one of the major threats to the structural integrity of buried oil and natural gas pipelines that are often located far from major markets with terrains prone to permanent ground deformations. These pipelines can experience large longitudinal strains and circumferential deformation resulting from the differential ground movements thereby potentially impacting pipeline safety by adversely affecting structural capacity and leak tight integrity. In order to proffer theoretical basis for the design, safety evaluation and maintenance of pipelines, the failure analysis and mechanical behavior of buried API X65 steel pipeline perpendicularly crossing landslide area was investigated with the Finite …


Effect Of Poisson’S Ratio On Young's Modulus Characterization Using Ultrasonic Technique By Modeling, Michael Onyetube Jan 2018

Effect Of Poisson’S Ratio On Young's Modulus Characterization Using Ultrasonic Technique By Modeling, Michael Onyetube

Electronic Theses and Dissertations

The past 27 years has witnessed a revolutionary growth in the progress of material development and application in almost all industry and business sectors, and this seems to be continuing even today. So many material-driven innovations have enabled the global spread in technology and improvements in capability, ranging from communications to aerospace and healthcare, to automotive and agriculture. Mechanical behavior of elastic materials is modeled by two main independent constants; Young’s modulus and Poisson’s ratio. An accurate measurement of both constants is necessary in most engineering applications, for example, the standard materials used for the calibration of some equipment, quality …


Analysis Of Composite Plates By Using Mechanics Of Structure Genome And Comparison With Ansys, Banghua Zhao Dec 2016

Analysis Of Composite Plates By Using Mechanics Of Structure Genome And Comparison With Ansys, Banghua Zhao

Open Access Theses

Motivated by a recently discovered concept, Structure Genome (SG) which is defined as the smallest mathematical building block of a structure, a new approach named Mechanics of Structure Genome (MSG) to model and analyze composite plates is introduced. MSG is implemented in a general-purpose code named SwiftComp™, which provides the constitutive models needed in structural analysis by homogenization and pointwise local fields by dehomogenization. To improve the user friendliness of SwiftComp™, a simple graphic user interface (GUI) based on ANSYS Mechanical APDL platform, called ANSYS-SwiftComp GUI is developed, which provides a convenient way to create some common SG models or …


Computational Fluid Dynamic Analysis Of Microbubble Drag Reduction Systems At High Reynolds Number, John D. Goolcharan Jul 2016

Computational Fluid Dynamic Analysis Of Microbubble Drag Reduction Systems At High Reynolds Number, John D. Goolcharan

FIU Electronic Theses and Dissertations

Microbubble drag reduction (MBDR) is an effective method to improve the efficiency of fluid systems. MBDR is a field that has been extensively studied in the past, and experimental values of up to 80% to 90% drag reduction have been obtained. The effectiveness and simplicity of MBDR makes it a viable method for real world applications, particularly in naval applications where it can reduce the drag between the surface of ships and the surrounding water. A two dimensional single phase model was created in ANSYS Fluent to effectively model the behavior of bubble laden flow over a flat plate. This …


Finite Element Simulation Of Single-Lap Shear Tests Utilizing The Cohesive Zone Approach, Wilson A. Perez Jan 2016

Finite Element Simulation Of Single-Lap Shear Tests Utilizing The Cohesive Zone Approach, Wilson A. Perez

Honors Undergraduate Theses

Many applications require adhesives with high strength to withstand the exhaustive loads encountered in regular operation. In aerospace applications, advanced adhesives are needed to bond metals, ceramics, and composites under shear loading. The lap shear test is the experiment of choice for evaluating shear strength capabilities of adhesives. Specifically during single-lap shear testing, two overlapping rectangular tabs bonded by a thin adhesive layer are subject to tension. Shear is imposed as a result. Debonding occurs when the shear strength of the adhesive is surpassed by the load applied by the testing mechanism. This research develops a finite element model (FEM) …


Fiber Orientation Prediction And Strength Evaluation Of Composite Spur Gears Reinforced By Discontinuous Fiber, Nawrin Jahan Jan 2016

Fiber Orientation Prediction And Strength Evaluation Of Composite Spur Gears Reinforced By Discontinuous Fiber, Nawrin Jahan

Electronic Theses and Dissertations

Composite materials have been extensively used for their important role in attenuation of components design, low specific weight, high mechanical performance, and excellent corrosion resistance offer significant advantages over metallic materials. These superlative properties can be attained by tailoring different material in an appropriate combination of the reinforcing phase (carbon fiber, alumina, etc.) and matrix phase (polymer, ceramic, metals, etc.). Carbon fiber reinforced composites are mostly used on intricate stress sensitive structures like wings of aero plane or gear. Amount of fiber, fiber type, and size of the fiber and the orientation of reinforcing fibers directly influence the mechanical properties …


Analytical Solutions Using High Order Composite Laminate Theory For Honeycomb Sandwich Plates With Viscoelastic Frequency Dependent Damping, Nan Shan Aug 2011

Analytical Solutions Using High Order Composite Laminate Theory For Honeycomb Sandwich Plates With Viscoelastic Frequency Dependent Damping, Nan Shan

All Theses

Analytical methods allow parametric changes in geometric and material properties of a honeycomb sandwich plate for studies of stiffness, mass, and damping characteristics with low computational cost. However, studies based on analytical methods are still limited with frequency independent damping models. Specifically, previous analytical models have not consider the frequency dependent damping for viscoelastic honeycomb core sandwich composites, while some work has been done on studying the honeycomb sandwich plate using finite element method, which can be computationally expensive for multiple parameter studies. Therefore, in this work, the honeycomb sandwich plate is studied analytically based on the cellular material theory, …


Design And Analysis Of An Innovative Semi-Flexible Hybrid Personal-Body-Armor System, Daniel Jeffrey Miller Jan 2011

Design And Analysis Of An Innovative Semi-Flexible Hybrid Personal-Body-Armor System, Daniel Jeffrey Miller

USF Tampa Graduate Theses and Dissertations

Current military-grade rifle body armor technology uses hard ballistic plates positioned on top of flexible materials, such as woven Kevlar® to stop projectiles and absorb the energy of the impact. However, absorbing the impact energy and stopping a rifle projectile comes at a cost to the wearer - mobility. In this thesis, a new concept for personal body armor is proposed - a semi-flexible hybrid body armor. This hybrid armor is comprised of two components that work as a system to effectively balance the flexibility offered by a soft fabric based armor with the protection level of hard plated armor. …


Numerical Simulation Of The Filling And Curing Stages In Reaction Injection Moulding, Using Ansys Cfx, Rui Igreja Jun 2007

Numerical Simulation Of The Filling And Curing Stages In Reaction Injection Moulding, Using Ansys Cfx, Rui Igreja

Rui Igreja

Commonly used methods for injection moulding simulation involve a considerable number of simplifications, leading to a significant reduction of the computational effort but, in some cases also to limitations. In this work, Reaction Injection Moulding (RIM) simulations are performed with a minimum of simplifications, by using the general purpose CFD software package Ansys CFX, designed for numerical simulation of fluid flow and heat and mass transfer. The Ansys CFX’s homogeneous multiphase flow model, which is generally considered to be the appropriate choice for modelling free surface flows where the phases are completely stratified and the interface is well defined, is …


Manufacturing, Testing And Modeling Of Advanced Filament Wound Grid Stiffened Composite Cylinders, Ravi Chaitanya Velamarthy Jan 2007

Manufacturing, Testing And Modeling Of Advanced Filament Wound Grid Stiffened Composite Cylinders, Ravi Chaitanya Velamarthy

LSU Master's Theses

Advanced Grid Stiffened (AGS) structures are a kind of FRP composites that are being extensively used in many engineering fields because of their inherent advantages. Hence it is of utmost importance to understand the basic mechanism of these structures in order to develop better models and to find ways to improve their efficiency. This thesis discusses the manufacturing technology used viz. the filament winding technique to fabricate grid stiffened composite cylinders. A step by step procedure of the fabrication process of grid cylinders is explained. The confinement effectiveness of the AGS cylinders is evaluated by filling them with concrete and …


An Evaluation Of Ansys Contact Elements, Serhan Sezer Jan 2005

An Evaluation Of Ansys Contact Elements, Serhan Sezer

LSU Master's Theses

The ANSYS code offers stress analysts a variety of contact element options: point-to-surface or surface-to-surface and low-order or high-order elements, in concert with any one of five contact algorithms (augmented Lagrangian, penalty method, etc.). This raises questions as to what option performs best under what circumstances. Here we offer some answers to these questions by examining performance in some numerical experiments. The numerical experiments focus on frictionless contact with a rigid indenter; even so, the number of experiments involved is quite large. The experiments use a battery of test problems with known analytical solutions: contact patch tests with nodes matching …


Development Of A Micro Power Relay With Static Electrical Actuator, Ren Yang Jan 2002

Development Of A Micro Power Relay With Static Electrical Actuator, Ren Yang

LSU Master's Theses

In this thesis, a research about design and fabrication of a micro power relay is presented. Compared with the traditional electromagnetic relay and solid-state relay, MEMS micro power relay is introduced. After introducing the advantage and other people's research about the MEMS relay, some design and simulation about a new prototype micro power relay are done. Based on the design, UV-LIGA is used as the fabrication method. The bottom part and top part of the micro power relay are fabricated separately. After assembly the top part on the bottom part, some simple tests about the micro power relay are done. …