Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2016

Finite element analysis

Discipline
Institution
Publication
Publication Type

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

Finite Element Simulation And Additive Manufacturing Of Stiffness-Matched Niti Fixation Hardware For Mandibular Reconstruction Surgery, Ahmadreza Jahadakbar, Narges Shayesteh Moghaddam, Amirhesam Amerinatanzi, David Dean, Haluk E. Karaca, Mohammad Elahinia Dec 2016

Finite Element Simulation And Additive Manufacturing Of Stiffness-Matched Niti Fixation Hardware For Mandibular Reconstruction Surgery, Ahmadreza Jahadakbar, Narges Shayesteh Moghaddam, Amirhesam Amerinatanzi, David Dean, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Process parameters and post-processing heat treatment techniques have been developed to produce both shape memory and superelastic NiTi using Additive Manufacturing. By introducing engineered porosity, the stiffness of NiTi can be tuned to the level closely matching cortical bone. Using additively manufactured porous superelastic NiTi, we have proposed the use of patient-specific, stiffness-matched fixation hardware, for mandible skeletal reconstructive surgery. Currently, Ti-6Al-4V is the most commonly used material for skeletal fixation devices. Although this material offers more than sufficient strength for immobilization during the bone healing process, the high stiffness of Ti-6Al-4V implants can cause stress shielding. In this paper, …


Numerical And Experimental Investigation Of Viscous Pressure Forming (Vpf) Process For Metal Bellows, Zhongjin Wang, Nan Xiang, Chunjun Dai Oct 2016

Numerical And Experimental Investigation Of Viscous Pressure Forming (Vpf) Process For Metal Bellows, Zhongjin Wang, Nan Xiang, Chunjun Dai

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Analytical Investigation Of Fretting Wear With Special Emphasis On Stress Based Models, Arnab Jyoti Ghosh Mar 2016

Analytical Investigation Of Fretting Wear With Special Emphasis On Stress Based Models, Arnab Jyoti Ghosh

Open Access Dissertations

Fretting refers to the minute oscillatory motion between two surfaces in contact under an applied normal load. It can cause either surface or subsurface initiated failure resulting in either fatigue or wear or both. Two distinct regimes – partial slip and gross slip are typically observed in fretting contacts. Due to the nature of contact, various factors such as wear debris, oxidation, surface roughness, humidity etc. effect failures caused due to fretting. A number of different techniques have been developed to quantify fretting damage and several numerical models are proposed to predict damage due to fretting. Fretting wear also depends …


Effects Of Defects On The Performance Of Hierarchical Honeycomb Metamaterials Realized Through Additive Manufacturing, Kazi Moshiur Rahman Jan 2016

Effects Of Defects On The Performance Of Hierarchical Honeycomb Metamaterials Realized Through Additive Manufacturing, Kazi Moshiur Rahman

Electronic Theses and Dissertations

Cellular metamaterials are of immense interest for many current engineering applications. Tailoring the structural organization of cellular structures leads to new metamaterials with superior properties providing lightweight and very strong/stiff structures. The incorporation of hierarchy to regular cellular structures enhances the properties and introduces novel tailorable metamaterials. For many complex cellular metamaterials, the only realistic manufacturing process is additive manufacturing (AM). The use of AM to manufacture large structures may lead to several types of defects during the manufacturing process, such as imperfect cell walls, irregular thickness, flawed joints, partially missing layers, and irregular elastic plastic behavior due to toolpath. …


Manufacturing And Mechanics Of Polymer Matrix Composites, Md Shariful Islam Jan 2016

Manufacturing And Mechanics Of Polymer Matrix Composites, Md Shariful Islam

Open Access Theses & Dissertations

Fiber-reinforced composite materials are widely used in the aerospace and automobile industries. Their strength-to-weight and stiffness-to-weight ratios make them suitable to be used in spacecraft, especially as cryogenic tank materials. One of the focus of this dissertation is to investigate the application of woven carbon and Kevlar® fiber composites as cryogenic tank materials. Tensile, bending and short beam shear tests are performed on rectangular specimens at room temperature and after cryogenic exposure (-196°C). It is found that the mechanical properties of these composite materials do not degrade significantly due to cryogenic exposure. It is observed that the failure mode took …


Computational Assessment Of Neural Probe And Brain Tissue Interface Under Transient Motion, Michael Polanco, Sebastian Bawab, Hangsoon Yoon Jan 2016

Computational Assessment Of Neural Probe And Brain Tissue Interface Under Transient Motion, Michael Polanco, Sebastian Bawab, Hangsoon Yoon

Mechanical & Aerospace Engineering Faculty Publications

The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial …


Effect Of Sparse-Build Internal Structure On Performance Of Fused Deposition Modeling Parts, Shixuan Meng Jan 2016

Effect Of Sparse-Build Internal Structure On Performance Of Fused Deposition Modeling Parts, Shixuan Meng

Masters Theses

"Fused deposition modeling (FDM) technology has been used in additive manufacturing for years and is able to significantly reduce both manufacturing time and cost for production tooling and end-use parts. Autoclave molding is one of the conventional tools used to produce composite parts. In autoclave molding, the soft composite material is positioned on the molding tool, and then subjected to vacuum and elevated temperatures to facilitate the curing of the resin. With additive manufacturing (AM), it is possible to fabricate the molding tool with a sparse internal structure, thereby reducing the fabrication time and cost compared to a solid tool. …


Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati Jan 2016

Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati

Dissertations, Master's Theses and Master's Reports

Phononic crystals (PhnCs) control, direct and manipulate sound waves to achieve wave guiding and attenuation. This dissertation presents methodology for analyzing nanotube materials based phononic crystals to achieve control over sound, vibration and stress mitigation. Much of the analytical work presented is in identifying frequency band gaps in which sound or vibration cannot propagate through these PhnCs. Wave attenuation and mitigation analysis is demonstrated using finite element simulation. Engineering principles from current research areas of solid mechanics, solid-state physics, elasto-dynamics, mechanical vibrations and acoustics are employed for the methodology. A considerable effort is put to show that these PhnCs can …


Design Optimization Of Sandwich Core, Mohammad Tauhiduzzaman Jan 2016

Design Optimization Of Sandwich Core, Mohammad Tauhiduzzaman

Open Access Theses & Dissertations

Ultralight sandwich structures comprising of low-density core with stiff facings have attracted significant research interest for their considerable weight saving applications. The aircraft industries are focusing on decreasing the structural mass to lower the manufacturing and operating costs. Design analysis of the sandwich cores using finite element analysis has been developed as a promising concept to feature sandwich structures with maximum strength, stiffness, and reduced weight. To obtain multifunctional behavior of sandwich panels, a profound investigation of geometrical and mechanical properties in the transverse plane is required because it is very susceptible to any kind loadings. Structural optimization is one …


Numerical Analysis Of Flexural Slip During Viscoelastic Buckle Folding, Davi Rodrigues Damasceno Jan 2016

Numerical Analysis Of Flexural Slip During Viscoelastic Buckle Folding, Davi Rodrigues Damasceno

Masters Theses

"Flexural slip is considered to be an important folding mechanism contributing in the development of different folds such as chevron, and kink-band buckle folds. Various filed studies have provided a general conceptual and qualitative understanding of flexural slip. However, quantitative evidence of the importance of the flexural slip mechanism during fold evolution is sparse, as the actual amount of surface parallel displacement, and timing, is difficult to measure accurately, due to the lack of suitable strain markers.

In this study 2D finite element analysis is used to overcome these disadvantages and to simulate flexural slip during viscoelastic buckle folding. Variations …


Effect Of Poisson’S Ratio On Material Properties Characterization By Nanoindentation With A Cylindrical Flat Tip Indenter, Md Mehadi Hassan Jan 2016

Effect Of Poisson’S Ratio On Material Properties Characterization By Nanoindentation With A Cylindrical Flat Tip Indenter, Md Mehadi Hassan

Electronic Theses and Dissertations

Nano indentation technology is commonly used to determine the mechanical properties of different kinds of engineering materials. The young’s modulus of the materials can be calculated with the load depth data obtained from an indentation test with a known Poisson’s ratio. In this investigation the NANOVEA micro/nanoindentation tester with a cylindrical flat-tip indenter will be used to find the elastic modulus, hardness and Pile up. Low carbon steel AISI1018, alloy steel AISI 4340 and aluminum alloy 6061 were selected for the case study. Finite element (FE) analysis using axisymmetric 3-D models used to establish the relationship between Poisson’s ratio and …


Methods And Implementation Of Fluid-Structure Interaction Modeling Into An Industry-Accepted Design Tool, Donn R. Sederstrom Jan 2016

Methods And Implementation Of Fluid-Structure Interaction Modeling Into An Industry-Accepted Design Tool, Donn R. Sederstrom

Electronic Theses and Dissertations

Fluid-structure interaction (FSI) modeling is a method by which fluid and solid domains are coupled together to produce a single result that cannot be produced if each physical domain was evaluated individually. The work presented in this dissertation is a demonstration of the methods and implementation of FSI modeling into an industry-appropriate design tool. Through utilizing computationally inexpensive equipment and commercially available software, the studies presented in this work demonstrate the ability for FSI modeling to become a tool used broadly in industry.

To demonstrate this capability, the cases studied purposely include substantial complexity to demonstrate the stability techniques required …


Finite Element And Probabilistic Analysis Of Soft Tissue Structures Of The Human Lumbar Spine, Dana Joseph Coombs Jan 2016

Finite Element And Probabilistic Analysis Of Soft Tissue Structures Of The Human Lumbar Spine, Dana Joseph Coombs

Electronic Theses and Dissertations

Human lumbar spine mechanics are influenced by soft tissue structures. Understanding and properly modeling these structures can help determine pathology, treatment, and implant design and performance. Finite element models of the L4-L5 level of the lumbar spine are often used, which include a representation of the intervertebral disc and spinal ligaments. Validation of these models are typically based on torque rotation data from a single subject or the models use average properties reported in literature. However, experimental testing reports variation up to 40% in ligament stiffness and even greater variability for annulus fibrosis properties. Probabilistic approaches enable consideration of the …