Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Simulation And Verification Of Fluid Jet Polishing, Senmiao Hu Nov 2016

Simulation And Verification Of Fluid Jet Polishing, Senmiao Hu

USF Tampa Graduate Theses and Dissertations

Fluid jet polishing (FJP) is a new advanced polishing technology that finds applications in many industries, especially in the optics industry. With the broad application of various surfaces in optics, the sub-micrometric scale and the nanometric surface roughness accuracy are major challenges. Fluid jet polishing is a technology developed from abrasive water jet machining. This technology is a water jet cutting technology, which uses high-pressure flow to cut/remove materials.

In this thesis, the working principle, and simulations, as well as verification of fluid jet polishing are thoroughly investigated. The verification of fluid jet polishing in this thesis includes velocity distribution …


Application Of Reynolds Stress Model Using Direct Modeling And Actuator Disk Approaches For A Small-Scale Wind Turbine, Randall Scott Jackson May 2016

Application Of Reynolds Stress Model Using Direct Modeling And Actuator Disk Approaches For A Small-Scale Wind Turbine, Randall Scott Jackson

Theses and Dissertations

The Reynolds Stress Model (RSM) has been avoided for turbulence closure in CFD simulations of wind turbines, largely due to the computational expense and the high potential for numerical instability. The advantage of using RSM is having access to shear stresses that are not available from two-equation RANS-based closure models like k-e and k-w. Access to the shear stresses will aide in the understanding of how the blade design will affect the wake, particularly in the near-wake region. In this research, the RSM turbulence model has been successfully applied in simulating a three-bladed small-scale wind turbine through a direct-model approach …


Numerical Analysis For The Hemodynamics In Unruptured Cerebral Aneurysms, Hashem Mhd Hicham Alargha Apr 2016

Numerical Analysis For The Hemodynamics In Unruptured Cerebral Aneurysms, Hashem Mhd Hicham Alargha

Theses

A cerebral aneurysm is a vascular disorder characterized by abnormal focal dilation of a brain artery which is considered as a serious and potentially life-threatening condition. Cerebral aneurysms affect around 2%-5% of adults and they are fatal and can rupture with an overall mortality rate of more than 50%. Through computational fluid dynamics investigation, this study is offering a closer look into the initiation growth and rupture of cerebral aneurysms. Four focus points are studied in this thesis which are sensitivity analysis of blood viscosity in aneurysms, the effect of cerebral aneurysm size on wall stresses and strain, hazard effects …


Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin Jan 2016

Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin

Mechanical Engineering Faculty Publications

Two-way coupling is performed between a spallation code and a hypersonic aerothermodynamics CFD solver to evaluate the effect of spalled particles on the flow field. Time accurate solutions are computed in argon and air flow fields. A single particle simulations and multiple particles simulations are performed and studied. The results show that the carbon vapor released by spalled particles tend to change the composition of the flow field, particularly the upstream region of the shock.


Two-Dimensional Numerical Study Of Micronozzle Geometry, Jason M. Pearl Jan 2016

Two-Dimensional Numerical Study Of Micronozzle Geometry, Jason M. Pearl

Graduate College Dissertations and Theses

Supersonic micronozzles operate in the unique viscosupersonic flow regime, characterized by large Mach numbers (M>1) and low Reynolds numbers (Re<1000). Past research has primarily focused on the design and analysis of converging-diverging de Laval nozzles; however, plug (i.e. centerbody) designs also have some promising characteristics that might make them amenable to microscale operation. In this study, the effects of plug geometry on plug micronozzle performance are examined for the Reynolds number range Re = 80-640 using 2D Navier-Stokes-based simulations. Nozzle plugs are shortened to reduce viscous losses via three techniques: one - truncation, two - the use of parabolic contours, and three - a geometric process involving scaling. Shortened nozzle are derived from a full length geometry designed for optimal isentropic performance. Expansion ratio (ε = 3.19 and 6.22) and shortened plug length (%L = 10-100%) are varied for the full Reynolds number range. The performance of plug nozzles is then compared to that of linear-walled nozzles for equal pressure ratios, Reynolds numbers, and expansion ratios. Linear-walled nozzle half-angle is optimized to to ensure plug nozzles are compared against the best-case linear-walled design.

Results indicate that the full length plug nozzle delivers poor performance on the microscale, incurring excessive viscous losses. Plug performance is increased by shortening the nozzle plug, with the scaling technique providing the best performance. The benefit derived from reducing plug length depends upon the Reynolds number, with a 1-2% increase for high Reynolds numbers an up to 14% increase at the lowest Reynolds number examined. In comparison to Linear-walled nozzle, plug nozzles deliver superior performance when under-expanded, however, …


Design And Experimental Investigation Of An Oxy-Fuel Combustion System For Magnetohydrodynamic Power Extraction, Manuel Johannes Hernandez Jan 2016

Design And Experimental Investigation Of An Oxy-Fuel Combustion System For Magnetohydrodynamic Power Extraction, Manuel Johannes Hernandez

Open Access Theses & Dissertations

A general consensus in the scientific and research community is the need to restrict carbon emissions in energy systems. Therefore, extensive research efforts are underway to develop the next generation of energy systems. In the field of power generation, researchers are actively investigating novel methods to produce electricity in a cleaner, efficient form. Recently, Oxy-Combustion for magnetohydrodynamic power extraction has generated significant interest, since the idea was proposed as a method for clean power generation in coal and natural gas power plants. Oxy-combustion technologies have been proposed to provide high enthalpy, electrically conductive flows for direct conversion of electricity. Direct …


Analysis Of Road Vehicle Aerodynamics With Computational Fluid Dynamics, Christian Armando Mata Jan 2016

Analysis Of Road Vehicle Aerodynamics With Computational Fluid Dynamics, Christian Armando Mata

Open Access Theses & Dissertations

A road vehicles aerodynamics can be one of the most influential aspects of its performance. With the increased importance on fuel efficiency in recent years, new road vehicles are being developed smaller in size, with smaller displacement engines, as well as with improved aerodynamics. The aerodynamics of a vehicle can have a significant effect on its fuel efficiency, as well as other important aspects of the vehicles performance such as the top speed, acceleration, and handling. A study focusing on analyzing aerodynamic effects due to vehicle geometries such as wheels covered by the vehicles body in comparison to open wheels …


Inlet Distortion Effects On The Unsteady Aerodynamics Of A Transonic Fan Stage, Daniel Oliver Reilly Jan 2016

Inlet Distortion Effects On The Unsteady Aerodynamics Of A Transonic Fan Stage, Daniel Oliver Reilly

Browse all Theses and Dissertations

A computational study was conducted to understand the influence of aircraft inlet distortion flow on the unsteady aerodynamic loading of a gas turbine fan stage. A single stage, transonic fan design with no inlet guide vanes was modeled with a commercial, computational fluid dynamics solver, STAR-CCM+, using the harmonic balance technique. The baseline inlet boundary condition applied to the model is consistent with that of a homeomorphic variant of the M2129 S-duct, and exhibited stagnation pressure distortion and a swirl pattern. The baseline inlet flow was decomposed and parameterized into a set of inlet boundary conditions which were individually applied …