Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Operational Planning In Combined Heat And Power Systems, Hariharan Gopalakrishnan Nov 2014

Operational Planning In Combined Heat And Power Systems, Hariharan Gopalakrishnan

Doctoral Dissertations

This dissertation presents methodologies for operational planning in Combined Heat and Power (CHP) systems. The subject of experimentation is the University of Massachusetts CHP system, which is a 22 MWe/640 MBh system for a district energy application. Systems like this have complex energy flow networks due to multiple interconnected thermodynamic components like gas and steam turbines, boilers and heat recovery steam generators and also interconnection with centralized electric grids. In district energy applications, heat and power requirements vary over 24 hour periods (planning horizon) due to changing weather conditions, time-of-day factors and consumer requirements. System thermal performance is highly dependent …


Improving Indoor Air Quality Through Botanical Air Filtration In Energy Efficient Residences, Daniel William Newkirk Apr 2014

Improving Indoor Air Quality Through Botanical Air Filtration In Energy Efficient Residences, Daniel William Newkirk

Open Access Theses

According to the U.S. EPA, the average American spends 90% of their time indoors where pollutants are two to five times more prevalent than outside. The consequences of these pollutants are estimated to cost the U.S. 125 billion dollars in lost health and productivity. Background literature suggests botanical air filtration may be able to solve this problem by leveraging the natural ability of plants to purify indoor air. By improving indoor air quality, energy consumption can also be reduced by bringing in less outside air to dilute contaminants within the space. A botanical air filter, called the Biowall, was designed …


A Metaevaluation Of Energy Efficiency Evaluations, Brandy Brown Apr 2014

A Metaevaluation Of Energy Efficiency Evaluations, Brandy Brown

Dissertations

This study systematically reviews the methodological characteristics of energy efficiency evaluations and uses metaevaluation to assess its quality. Metaevaluation is used to systematically assess the quality of evaluation products, confirm that evaluations deliver sound findings and conclusions, are useful to the client, are credible, are ethically conducted, and are done as cost-effective as possible. The results of this study show that the ability to accurately assess evaluation for methodological quality using evaluations reports as a primary data source depends on the presence of detailed descriptions of evaluation methods. Furthermore, the study suggests that methodological variations of energy efficiency evaluations coalesce …


Low Frequency Energy Scavenging Using Sub-Wave Length Scale Acousto-Elastic Metamaterial, Raiz U. Ahmed, Sourav Banerjee Jan 2014

Low Frequency Energy Scavenging Using Sub-Wave Length Scale Acousto-Elastic Metamaterial, Raiz U. Ahmed, Sourav Banerjee

Faculty Publications

This letter presents the possibility of energy scavenging (ES) utilizing the physics of acousto-elastic metamaterial (AEMM) at low frequencies (<∼3KHz). It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester), simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix) ofmetamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz), maximum power in the micro Watts (∼35µW) range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW) power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES) with multi-cellmodel is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW) between 0.2 KHz and 1.5 KHz acoustic frequencies.