Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

Data Acquisition, Analysis, And Modeling Of Rotordynamic Systems, Michael P. Mullen Jun 2020

Data Acquisition, Analysis, And Modeling Of Rotordynamic Systems, Michael P. Mullen

Master's Theses

Data acquisition systems for rotordynamic analysis and machine vibration were explored for the purpose of replacing the obsolete Bently Nevada ADRE 208 and ADRE for Windows system. These included the development of Matlab based custom data acquisition systems and a user interface. A model of an anisotropic rotor response undergoing transient speed was developed for the rapid prototyping and testing of data acquisition systems. Several methods for the measurement of amplitudes and phase in both the time domain and frequency domain were developed and compared. An alternate data acquisition method which is more inline with industry practices was created for …


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


Study Of The 3Ω Measurement Of The In-Plane And The Cross-Plane Thermal Properties On Anisotropic Thin Film Materials, Daxi Zhang Dec 2018

Study Of The 3Ω Measurement Of The In-Plane And The Cross-Plane Thermal Properties On Anisotropic Thin Film Materials, Daxi Zhang

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Due to the size of the nano-scale and micro-scale materials, traditional method for measuring the thermal properties of the bulk materials cannot be applied. The 3 Omega Method was developed by D. G. Cahill in the early 90s. It was used extensively to measure the thermal properties of thin film dielectric materials. Compare with other simulations or experimental methods, the 3 Omega Method has many advantages. Previous research has indicate that the 3 Omega method is capable of measuring the cross-plane thermal conductivity of thin film materials. In extension, an alternative improvement for measurement of the in-plane thermal conductivity and …


Computational Wave Field Modeling Using Sequential Mapping Of Poly-Crepitus Green’S Function In Anisotropic Media, Sajan Shrestha Jan 2017

Computational Wave Field Modeling Using Sequential Mapping Of Poly-Crepitus Green’S Function In Anisotropic Media, Sajan Shrestha

Theses and Dissertations

In this thesis, a meshless semi-analytical computational method is presented to compute the ultrasonic wave field in the generalized anisotropic material while understanding the physics of wave propagation in detail. To understand the wave-damage interaction in an anisotropic material, it is neither feasible nor cost-effective to perform multiple experiments in the laboratory. Hence, recently the computational nondestructive evaluation (CNDE) received much attention to performing the NDE experiments in a virtual environment. In this thesis, a fundamental framework is constructed to perform the CNDE experiment of a thick composite specimen in a Pulse-Echo (PE) mode. To achieve the target, the following …


Improving The Mechanical Performance Of 3d Printed Parts Using Fused Filament Fabrication, Inderpreet Binning Jun 2016

Improving The Mechanical Performance Of 3d Printed Parts Using Fused Filament Fabrication, Inderpreet Binning

Industrial and Manufacturing Engineering

The 3D printing industry has seen rapid growth in the last 10 years and has been called the next industrial revolution. There are several different processes used in 3D printing, but the most popular process is called Fused Filament Fabrication (FFF) or Fused Deposition Modeling (FDM). This is the process where (most commonly) plastic filament enters a nozzle, is heated to a semi-liquid state, and then deposited into a pattern to create a print. One major drawback to this process is that the prints are anisotropic. This means that the strength of the print varies with the orientation that it …


Anisotropic Electrical Response Of Carbon Fiber Reinforced Composite Materials, Mohammad Faisal Haider Jan 2016

Anisotropic Electrical Response Of Carbon Fiber Reinforced Composite Materials, Mohammad Faisal Haider

Theses and Dissertations

Composites materials are often subjected to multi-physical conditions in different applications where, in addition to mechanical loads, they also need to sustain other types of loads such as electrical currents. The multi-physical behavior of composites needs to be understood and analyzed to facilitate new multi-functional material design. An essential first step towards this goal is to understand how multi-physics properties depend on local details (e.g. micro-structure). Composite materials have heterogeneous electrical properties (carbon/epoxy) at the local level that can be different at the global level. To conduct the multi-physics study, the electrical signal is employed to the composite sample for …


Synthesis, Processing And Characterization Of Polymer Derived Ceramic Nanocomposite Coating Reinforced With Carbon Nanotube Preforms, Hongjiang Yang Jan 2014

Synthesis, Processing And Characterization Of Polymer Derived Ceramic Nanocomposite Coating Reinforced With Carbon Nanotube Preforms, Hongjiang Yang

Electronic Theses and Dissertations

Ceramics have a number of applications as coating material due to their high hardness, wear and corrosion resistance, and the ability to withstand high temperatures. Critical to the success of these materials is the effective heat transfer through a material to allow for heat diffusion or effective cooling, which is often limited by the low thermal conductivity of many ceramic materials. To meet the challenge of improving the thermal conductivity of ceramics without lowering their performance envelope, carbon nanotubes were selected to improve the mechanical properties and thermal dispersion ability due to its excellent mechanical properties and high thermal conductivity …


Quantifying The Nonlinear, Anisotropic Material Response Of Spinal Ligaments, Daniel J. Robertson Feb 2013

Quantifying The Nonlinear, Anisotropic Material Response Of Spinal Ligaments, Daniel J. Robertson

Theses and Dissertations

Spinal ligaments may be a significant source of chronic back pain, yet they are often disregarded by the clinical community due to a lack of information with regards to their material response, and innervation characteristics. The purpose of this dissertation was to characterize the material response of spinal ligaments and to review their innervation characteristics.


Review of relevant literature revealed that all of the major spinal ligaments are innervated. They cause painful sensations when irritated and provide reflexive control of the deep spinal musculature. As such, including the neurologic implications of iatrogenic ligament damage in the evaluation of surgical procedures …


Anisotropic Compressive Pressure-Dependent Effective Thermal Conductivity Of Granular Beds, R. Daniel Garrett May 2011

Anisotropic Compressive Pressure-Dependent Effective Thermal Conductivity Of Granular Beds, R. Daniel Garrett

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

In situ planetary effective thermal conductivity measurements are typically made using a long needle-like probe, which measures effective thermal conductivity in the probe's radial (horizontal) direction. The desired effective vertical thermal conductivity for heat flow calculations is assumed to be the same as the measured effective horizontal thermal conductivity. However, it is known that effective thermal conductivity increases with increasing compressive pressure on granular beds and horizontal stress in a granular bed under gravity is related to the vertical stress through Jaky's at-rest earth pressure coefficient. No research has been performed previously on determining the anisotropic effective thermal conductivity of …


Simulation Of Creep In Nickel Based Single Crystal Superalloys, Yunhong Pang May 2005

Simulation Of Creep In Nickel Based Single Crystal Superalloys, Yunhong Pang

Dissertations

Nickel based single crystal Superalloys are finding wide spread use in high temperature gas turbines and other similar applications because of their superior high-temperature strength and creep properties as compared to the other materials. This is due to two factors: solid solution and precipitation strengthening of the gamma (γ) and gamma prime (γ') phases, and the elimination of grain boundaries. Creep of Nickel based single crystal Superalloys are caused by two primary mechanisms, dislocation creep and diffusion creep. Several factors that affect the creep life of Nickel based single crystal Superalloys are the specific microstructure, stress, temperature and rafting. Also, …