Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Characterization Of Directed Energy Deposition Additively Manufactured Grcop-42 Alloy, Scott Landes Jan 2020

Characterization Of Directed Energy Deposition Additively Manufactured Grcop-42 Alloy, Scott Landes

Electronic Theses and Dissertations

GRCop is an alloy family constructed of copper, chromium, and niobium and was developed by NASA for high heat flux applications. The first of its kind, GRCop-84, was specifically designed for the environments seen by channel cooled main combustion chamber liners. To further increase thermal conductivity while maintaining material strength characteristics, the percentage of alloying elements were cut in half and GRCop- 42 was developed. In recent years, NASA has successfully additively manufactured GRCop with comparable material characteristics to wrought GRCop using a Laser Powder Bed Fusion (L-PBF) process. Benefits of this process include fabrication of intricate cooling channels as …


Development Of A Multi-Probe Kelvin Scanner Device For Industrially-Relevant Characterization Of Surface-Activated Carbon Fiber Reinforced Thermoplastic Composites, Kirby Simon May 2019

Development Of A Multi-Probe Kelvin Scanner Device For Industrially-Relevant Characterization Of Surface-Activated Carbon Fiber Reinforced Thermoplastic Composites, Kirby Simon

McKelvey School of Engineering Theses & Dissertations

Carbon fiber reinforced thermoplastic (CFRTP) composites are becoming increasingly attractive materials in manufacturing due to their lightweight nature, mechanical strength, and corrosion resistance. Surface activation of these materials is usually required during processing to increase the bond strength of assemblies (aerospace and automotive industries) or improve adhesion with implants (biomedical industry). Industrially-relevant, nondestructive quality control methods for assessing the activation state of these materials do not currently exist, however. Applying principles discovered through the use of scanning probe microscopy, a multiple-probe Kelvin scanning (MPKS) device has been developed that can assess the uniformity of the activation state of plasma-treated CFRTP …


Investigating Using Titanium Zirconium Molybdenum For Additively Manufacturing Aerospace Components, Justin Hunter Vanhoose Jan 2019

Investigating Using Titanium Zirconium Molybdenum For Additively Manufacturing Aerospace Components, Justin Hunter Vanhoose

Open Access Theses & Dissertations

Mankind throughout history has possessed an innate characteristic to explore, migrating to new frontiers.The requirement for this travel is most broadly associated with the need to pursue more resources. Rockets have been used as a means of weapons since the Sung Dynasty in the thirteenth empire and have now been integrated for travel/transport. The sophistication of rocketry and propulsion has reached a level to where it is plausible that mankind will be a multi-planetary species. The space industry has grown significantly with the advancement of the sophistication of these rocket technologies. However, a specific challenge to overcome in the space …


Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi Jan 2018

Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi

Williams Honors College, Honors Research Projects

Modern flight vehicles, such as rockets, missiles, and airplanes, experience a force caused by forebody wave drag during the flight. This drag force is induced when the frontal point of each vehicle breaks the pressure wave during flight. Efforts to reduce this wave drag force to improve flight efficiency include modifying the nosecone profile of the flight vehicles to lower the drag force.

This project revolved around creating a design to make the transformation of nosecone shapes from a ¾ Parabolic profile to a ½ Power Series profile possible, mid-flight. Using a novel nosecone assembly, shape memory alloys (SMAs) and …


Hybrid Manufacturing Processes For Fusion Welding And Friction Stir Welding Of Aerospace Grade Aluminum Alloys, Megan Alexandra Gegesky Jan 2016

Hybrid Manufacturing Processes For Fusion Welding And Friction Stir Welding Of Aerospace Grade Aluminum Alloys, Megan Alexandra Gegesky

Masters Theses

"Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction …