Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Mechanical Impedance Of Ankle As A Function Of Electromyography Signals Of Lower Leg Muscles Using Artificial Neural Network, Chen Jia Jan 2015

Mechanical Impedance Of Ankle As A Function Of Electromyography Signals Of Lower Leg Muscles Using Artificial Neural Network, Chen Jia

Dissertations, Master's Theses and Master's Reports - Open

This paper reports on the feasibility of developing a model to describe the nonlinear relationship between the mechanical impedance of the human ankle within a specified range of frequency and the root mean square (RMS) value of the Electromyography (EMG) signals of the muscles of human ankle using Artificial Neural Network (ANN). A lower extremity rehabilitation robot — Anklebot was used to apply pseudo-random mechanical perturbations to the ankle and measure the angular displacement of the ankle to estimate the data of ankle mechanical impedance. Meanwhile, the surface EMG signals from the selected muscles were monitored and recorded using a …


A Backing Device Based On An Embedded Stiffener And Retractable Insertion Tool For Thin-Film Cochlear Arrays, Radheshyam Tewari Jan 2014

A Backing Device Based On An Embedded Stiffener And Retractable Insertion Tool For Thin-Film Cochlear Arrays, Radheshyam Tewari

Dissertations, Master's Theses and Master's Reports - Open

Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based …