Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Hot-Wire Anemometer Measurements Of Atmospheric Surface Layer Turbulence Via Unmanned Aerial Vehicle, Caleb A. Canter Jan 2019

Hot-Wire Anemometer Measurements Of Atmospheric Surface Layer Turbulence Via Unmanned Aerial Vehicle, Caleb A. Canter

Theses and Dissertations--Mechanical Engineering

An instrumented unmanned aerial vehicle (UAV) was developed and employed to observe the full range of turbulent motions that exist within the inertial subrange of atmospheric surface layer turbulence. The UAV was host to a suite of pressure, temperature, humidity, and wind sensors which provide the necessary data to calculate the variety of turbulent statistics that characterize the flow. Flight experiments were performed with this aircraft, consisting of a large square pattern at an altitude of 100 m above ground level. In order to capture the largest turbulent scales it was necessary to maximize the size of the square pattern. …


Development Of An Unmanned Aerial Vehicle For Atmospheric Turbulence Measurement, Brandon M. Witte Jan 2016

Development Of An Unmanned Aerial Vehicle For Atmospheric Turbulence Measurement, Brandon M. Witte

Theses and Dissertations--Mechanical Engineering

An unmanned aerial vehicle was developed to study turbulence in the atmospheric boundary layer. The development of the aircraft, BLUECAT5, and instrumentation package culminated in a series of flight experiments conducted in two different locations near Stillwater, Oklahoma, USA. The flight experiments employed the use of two of the unmanned aerial vehicles flying simultaneously, each containing a five-hole pressure probe as part of a turbulence-measuring instrumentation package. A total of 18 flights were completed with the objective to measure atmospheric properties at five altitudes between 20 and 120 meters. Multiple flights were flown over two days in which the effects …


Filtered-Dynamic-Inversion Control For Fixed-Wing Unmanned Aerial Systems, Jon Mullen Jan 2014

Filtered-Dynamic-Inversion Control For Fixed-Wing Unmanned Aerial Systems, Jon Mullen

Theses and Dissertations--Mechanical Engineering

Instrumented umanned aerial vehicles represent a new way of measuring turbulence in the atmospheric boundary layer. However, autonomous measurements require control methods with disturbance-rejection and altitude command-following capabilities. Filtered dynamic inversion is a control method with desirable disturbance-rejection and command-following properties, and this controller requires limited model information. We implement filtered dynamic inversion as the pitch controller in an altitude-hold autopilot. We design and numerically simulate the continuous-time and discrete-time filtered-dynamic-inversion controllers with anti-windup on a nonlinear aircraft model. Finally, we present results from a flight experiment comparing the filtered-dynamic-inversion controller to a classical proportional-integral controller. The experimental results show …


Aerodynamics And Control Of A Deployable Wing Uav For Autonomous Flight, Michael Thamann Jan 2012

Aerodynamics And Control Of A Deployable Wing Uav For Autonomous Flight, Michael Thamann

Theses and Dissertations--Mechanical Engineering

UAV development and usage has increased dramatically in the last 15 years. In this time frame the potential has been realized for deployable UAVs to the extent that a new class of UAV was defined for these systems. Inflatable wing UAVs provide a unique solution for deployable UAVs because they are highly packable (some collapsing to 5-10% of their deployed volume) and have the potential for the incorporation of wing shaping. In this thesis, aerodynamic coefficients and aileron effectiveness were derived from the equations of motion of aircraft as necessary parameters for autonomous flight. A wind tunnel experiment was performed …


Design And Flight Testing Of A Warping Wing For Autonomous Flight Control, Edward Brady Doepke Jan 2012

Design And Flight Testing Of A Warping Wing For Autonomous Flight Control, Edward Brady Doepke

Theses and Dissertations--Mechanical Engineering

Inflatable-wing Unmanned Aerial Vehicles (UAVs) have the ability to be packed in a fraction of their deployed volume. This makes them ideal for many deployable UAV designs, but inflatable wings can be flexible and don’t have conventional control surfaces. This thesis will investigate the use of wing warping as a means of autonomous control for inflatable wings. Due to complexities associated with manufacturing inflatable structures a new method of rapid prototyping deformable wings is used in place of inflatables to decrease cost and design-cycle time. A UAV testbed was developed and integrated with the warping wings and flown in a …


Constrained Volume Packing Of Deployable Wings For Unmanned Aircraft, Turner John Harris Jan 2011

Constrained Volume Packing Of Deployable Wings For Unmanned Aircraft, Turner John Harris

University of Kentucky Master's Theses

UAVs are becoming an accepted tool for sensing. The benefits of deployable wings allow smaller transportation enclosures such as soldier back packs up to large rocket launched extraterrestrial UAVs. The packing of soft inflatable wings and Hybrid inflatable with rigid section wings is being studied at the University of Kentucky. Rigid wings are volume limited while inflatable wings are mass limited. The expected optimal wing design is a hybrid approach. Previous wing designs have been packed into different configurations in an attempt to determine the optimal stowed configurations. A comparison of rigid, hybrid, and inflatable wings will be presented. Also …