Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi Feb 2024

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi

LSU Doctoral Dissertations

This dissertation reports the findings of several studies on the mechanical and microstructural properties of parts made using atomic diffusion additive manufacturing (ADAM) and additive friction stir deposition (AFSD). The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in Chapter 1. The design was optimized based on the finite element analysis and analytical solution. The stress–life (S–N) curve is obtained for Inconel alloy 718. Chapter 2 presents the findings of ultrasonic bending-fatigue and tensile tests carried out on the ADAM test specimens. The S-N curves were created in the very high-cycle fatigue regime. …


Tunable Passive Shock And Vibration Isolators For Rotational Isolation, Chase B. Lemaire Jul 2022

Tunable Passive Shock And Vibration Isolators For Rotational Isolation, Chase B. Lemaire

LSU Master's Theses

Shock and vibration isolation are a critical need in helmets, which are widely used to protect athletes, workers, soldiers, and astronauts. Passive vibration isolation systems are a good option when mass and volume should be minimized and when the experienced loadings can be predicted. However, it is frequently challenging to find materials and structures which exhibit the optimal vibration and impact isolation properties for an application. As a case study illustrating a novel design paradigm for rotational shock absorption, a family of optimal solutions for the physical properties of American football helmets is presented. Lumped parameter Simulink models simulate a …


Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen Aug 2021

Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen

LSU Doctoral Dissertations

Selective Laser Melting (SLM) is a laser powder bed fusion (L-PBF) based additive manufacturing (AM) method, which uses a laser beam to melt the selected areas of the metal powder bed. A customized SLM 3D printer that can handle a small quantity of metal powders was built in the lab to achieve versatile research purposes. The hardware design, electrical diagrams, and software functions are introduced in Chapter 2. Several laser surface engineering and SLM experiments were conducted using this customized machine which showed the functionality of the machine and some prospective fields that this machine can be utilized. Chapter 3 …


Large Eddy Simulations Of Vertical Jets In Crossflow, Pranaya Pokharel Oct 2018

Large Eddy Simulations Of Vertical Jets In Crossflow, Pranaya Pokharel

LSU Doctoral Dissertations

Jets in crossflow (JICF) have applications ranging from oil spill to film cooling of turbine blades. Hence, an understanding of the flow physics is important. The majority of the research has been conducted for low velocity ratios between jet and crossflow with round jets. JICF is demonstrated to behave differently for high velocity ratios and different jet shapes. Circular and rectangular jets are commonly used in aircraft applications. Current study focuses on high velocity ratio JICF issuing from both circular and rectangular exit.

For simulating JICF, an in house code “Chem3D” is used with Large Eddy Simulation (LES) to model …


Numerical Study Of Liquid Atomization And Breakup Using The Volume Of Fluid Method In Ansys Fluent, Sai Saran Kandati Oct 2018

Numerical Study Of Liquid Atomization And Breakup Using The Volume Of Fluid Method In Ansys Fluent, Sai Saran Kandati

LSU Master's Theses

The spherical metal particles produced from the centrifugal atomization process have been the topic of numerous theoretical, experimental and numerical studies from the past few years. This atomization process uses centrifugal force to break-up molten material into spherical droplets, which are quenched into solidified granules by the flow of cold air on the spherical droplets. In the present work, a transient three-dimensional multiphase CFD model is applied to three different materials: Molten slag, aqueous glycerol solution, and molten Ni-Nb to study the influence of the dimensionless parameters on the centrifugal atomization outcome.

Results from numerical experiments indicated that the droplet …


Modeling Of The Veterinary Anesthetic Circuit, Corinne Viloria Duplantis Jul 2018

Modeling Of The Veterinary Anesthetic Circuit, Corinne Viloria Duplantis

LSU Master's Theses

Anesthesia is used to sedate both humans and animals for surgery. In veterinary practice, breathing systems are often used to supply anesthetic gas to the patient. Occasionally, a large amount of pressure can build up in the breathing circuit. This high pressure, if unnoticed, can lead to fatal injury to the lungs of the veterinary patient. The maximum allowable pressure in the anesthetic circuit for small animals is 25 cmH2O or 2450 Pa. As such, it is necessary to monitor oxygen flow rate (ranging from 0.1-4 LPM), pressure, oxygen rate, anesthetic composition, among other variables during an operation. …


Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam Dec 2017

Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam

LSU Doctoral Dissertations

The application of the Euler-Euler framework based Computational Fluid Dynamics (CFD) models for simulating the two-phase gas-liquid bubbly flow in down-flow bubble columns is discussed in detail. Emphasis is given towards the modelling and design optimization of a novel down-flow bubble column. The design features of this novel down-flow bubble column and its advantages over a conventional Plunging Jet down-flow bubble column are discussed briefly. Then, some of the present challenges in simulating a conventional Plunging Jet down-flow bubble column in the Euler-Euler framework is highlighted, and a sigmoid function based drag modification function is implemented to overcome those challenges. …