Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman Dec 2012

Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman

Masters Theses

Extremization of a weak form for the continuum energy conservation principle differential equation naturally implements fluid convection and radiation as flux Robin boundary conditions associated with unsteady heat transfer. Combining a spatial semi-discretization via finite element trial space basis functions with time-accurate integration generates a totally node-based algebraic statement for computing. Closure for gray body radiation is a newly derived node-based radiosity formulation generating piecewise discontinuous solutions, while that for natural-forced-mixed convection heat transfer is extracted from the literature. Algorithm performance, mathematically predicted by asymptotic convergence theory, is subsequently validated with data obtained in 24 hour diurnal field experiments for …


Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian Aug 2012

Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian

Electronic Thesis and Dissertation Repository

In this thesis, a computational framework for patient-specific preoperative planning of Robotics-Assisted Minimally Invasive Cardiac Surgery (RAMICS) is developed. It is expected that preoperative planning of RAMICS will improve the rate of success by considering robot kinematics, patient-specific thoracic anatomy, and procedure-specific intraoperative conditions. Given the significant anatomical features localized in the preoperative computed tomography images of a patient's thorax, port locations and robot orientations (with respect to the patient's body coordinate frame) are determined to optimize characteristics such as dexterity, reachability, tool approach angles and maneuverability. In this thesis, two approaches for preoperative planning of RAMICS are proposed that …


Design Of Orbital Maneuvers With Aeroassisted Cubesatellites, Stephanie Clark May 2012

Design Of Orbital Maneuvers With Aeroassisted Cubesatellites, Stephanie Clark

Graduate Theses and Dissertations

Recent advances within the field of cube satellite technology has allowed for the possible development of a maneuver that utilizes a satellite's Low Earth Orbit (LEO) and increased atmospheric density to effectively use lift and drag to implement a noncoplanar orbital maneuver. Noncoplanar maneuvers typically require large quantities of propellant due to the large delta-v that is required. However, similar maneuvers using perturbing forces require little or no propellant to create the delta-v required. This research reported here studied on the effects of lift on orbital changes, those of noncoplanar types in particular, for small satellites without orbital maneuvering thrusters. …


The Search For An Optimal Means Of Determining The Minmax Control Parameter Using Sensitivity Analysis, John Teye Brown Apr 2012

The Search For An Optimal Means Of Determining The Minmax Control Parameter Using Sensitivity Analysis, John Teye Brown

Doctoral Dissertations

The use of computational methods for design and simulation of control systems allows for a cost-effective trial and error approach. In this work, we are concerned with the robust, real-time control of physical systems whose state space is infinite-dimensional. Such systems are known as Distributed Parameter Systems (DPS). A body whose state is heterogeneous is a distributed parameter. In particular, this work focuses on DPS systems that are governed by linear Partial Differential Equations, such as the heat equation. We specifically focus on the MinMax controller, which is regarded as being a very robust controller. The mathematical formulation of the …


Mathematical Modeling Of Pipeline Features For Robotic Inspection, Yang Gao Apr 2012

Mathematical Modeling Of Pipeline Features For Robotic Inspection, Yang Gao

Doctoral Dissertations

Underground pipeline systems play an indispensable role in transporting liquids in both developed and developing countries. The associated social and economic cost to repair a pipe upon abrupt failure is often unacceptable. Regular inspection is a preventative action that aims to monitor pipe conditions, catch abnormalities and reduce the chance of undesirable surprises. Robots with CCTV video cameras have been used for decades to inspect pipelines, yielding only qualitative information. It is becoming necessary and preferable for municipalities, project managers and engineers to also quantify the 3-D geometry of underground pipe networks. Existing robots equipped specialized hardware and software algorithms …


Large Eddy Simulation Of Dispersed Multiphase Flow, Yejun Gong Jan 2012

Large Eddy Simulation Of Dispersed Multiphase Flow, Yejun Gong

Dissertations, Master's Theses and Master's Reports - Open

This thesis covers two main topics. The first is the comparison between the Reynoldsaveraged Navier-Stokes (RANS) simulation and the Large Eddy Simulation (LES) of high injection pressure diesel sprays under non-evaporating or evaporating conditions. The second topic is the comparison of the fuel behavior in the spray process between the hydrotreated vegetable oil (HVO) and the conventional EN 590, diesel #2 and n-heptane fuels.

To validate the RANS and LES spray simulations, comparisons were made with experimental data. The LES turbulence model, the initial drop size distribution (IDSD), the Levich jet breakup model and the CAB drop breakup model are …