Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Modeling Vibration Stiffness: An Analytical Extension Of Hertzian Theory For Angular Contact Bearings With A Thin Viscoelastic Coating, Davis R. Burton May 2024

Modeling Vibration Stiffness: An Analytical Extension Of Hertzian Theory For Angular Contact Bearings With A Thin Viscoelastic Coating, Davis R. Burton

Honors Theses

This thesis considers the novel angular contact rolling-element bearings proposed by NASA’s Glenn Research Center, which are coated with a thin solid lubricant that exhibits viscoelastic behavior. Current analytical models for the dynamic stiffness matrix of angular contact bearings, critical for vibration analysis, lack the ability to model the effects of a solid coating, as well as the time dependencies inherent in viscoelastic theory. The author first presents an overview of the stiffness matrix derivation, followed by a treatment of the underlying Hertzian contact theory. An analytical extension of this theory is proposed which accounts for a thin elastic layer …


Mathematical Modeling Of A Variable Mass Rocket’S Dynamics Using The Differential Transform Method, Ashwyn Sam May 2020

Mathematical Modeling Of A Variable Mass Rocket’S Dynamics Using The Differential Transform Method, Ashwyn Sam

Honors Theses

In this paper, the mathematical modelling of a rocket with varying mass is investigated to construct a function that can describe the velocity and position of the rocket as a function of time. This research is geared more towards small scale rockets where the nonlinear drag term is of great interest to the underlying dynamics of the rocket. A simple force balance on the rocket using Newton’s second law of motion yields a Riccati differential equation for which the solution yields the velocity of the rocket at any given time. This solution can then be integrated with respect to time …