Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Characterization Of Carbon-Fiber Reinforced Polyetherimide Thermoplastic Composites Using Mechanical And Ultrasonic Methods, Mohannad A. Alhaidri Aug 2014

Characterization Of Carbon-Fiber Reinforced Polyetherimide Thermoplastic Composites Using Mechanical And Ultrasonic Methods, Mohannad A. Alhaidri

Theses and Dissertations

Continuous fiber-reinforced thermoplastics (CFRT) have the potential for being a mass-produced material for high-performance applications. The primary challenge of using CFRT is achieving fiber wet-out due to the high viscosity of thermoplastics. This results in higher temperatures and pressures required for processing the composites. Co-mingling thermoplastic fibers with a reinforcing fiber, potentially, can enable better wetting by reducing the distance the matrix needs to flow. This could result in shorter cycle times and better consolidation at lower temperatures and pressures. In this study, a polyetherimide (PEI) fiber was comingled with carbon fibers (CF). The resultant fibers were woven into fabrics …


Microstructural Factors Of Strain Delocalization In Model Metallic Glass Matrix Composites, Thomas James Hardin Jun 2014

Microstructural Factors Of Strain Delocalization In Model Metallic Glass Matrix Composites, Thomas James Hardin

Theses and Dissertations

Metallic glass matrix composites have enormous potential stemming from the interplay between crystalline and amorphous phases. This work models such a composite using shear transformation zone dynamics (a modified kinetic Monte Carlo method) for the amorphous phase, and a local Taylor dislocation model for the crystalline phase. An N-factorial experiment using the model is presented examining the effects of crystalline volume fraction, microstructure length scale, and yield stress of the crystalline phase. Each replicate is analyzed for maximum stress, maximum strain, strain energy dissipation, strain localization, and strain partitioning between phases. Regression analysis is used to identify statistically-significant trends in …