Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

The Summer Undergraduate Research Fellowship (SURF) Symposium

Energetic materials

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Generation Of Inhomogeneous Acoustic Waves Using An Array Of Loudspeakers, Samuel E. Wonfor, Trevor A. Kyle, J. Stuart Bolton, Jeffrey F. Rhoads Aug 2017

Generation Of Inhomogeneous Acoustic Waves Using An Array Of Loudspeakers, Samuel E. Wonfor, Trevor A. Kyle, J. Stuart Bolton, Jeffrey F. Rhoads

The Summer Undergraduate Research Fellowship (SURF) Symposium

In previous studies it has been shown that pressure fields created by inhomogeneous sound waves (waves which decay in a direction perpendicular to their propagation direction) are able to transmit energy into objects more effectively than ones created by conventional sound waves. This behavior may be useful in the detection of hidden explosive threats. To explore this, a device capable of constructing inhomogeneous waves is being developed. The proposed device is an acoustic array consisting of several high-frequency speakers. The speakers are independently driven to construct a desired inhomogeneous pressure field on a target surface. Inhomogeneous pressure fields were reconstructed …


The Influence Of Macroscale Stress Concentrations On The Near-Resonant Thermomechanics Of Mock Energetic Materials, Lauren A. Cooper, Allison R. Range, Jeffrey F. Rhoads Aug 2017

The Influence Of Macroscale Stress Concentrations On The Near-Resonant Thermomechanics Of Mock Energetic Materials, Lauren A. Cooper, Allison R. Range, Jeffrey F. Rhoads

The Summer Undergraduate Research Fellowship (SURF) Symposium

The characterization of particulate composite energetic materials, both with and without stress concentration, is currently of great interest to the defense community. This work seeks to further characterize the self-heating effect of composite energetic plates, particularly around regions of high stress, when subjected to harmonic excitation near resonance. Mock energetic plates with macroscale stress concentrations are prepared in various compositions based on the PBXN-109 formulation, and are tested near the first resonant frequency using an electrodynamic shaker. The resulting mechanical and thermal responses are recorded using a laser Doppler vibrometer and an infrared camera, respectively. Upon comparison between the regions …


Applications Of Additive Manufacturing Techniques In Making Energetic Materials, Peter A. Cattani, Trevor J. Fleck, Jeff F. Rhoads, Steven F. Son, I. Emre Gunduz Aug 2016

Applications Of Additive Manufacturing Techniques In Making Energetic Materials, Peter A. Cattani, Trevor J. Fleck, Jeff F. Rhoads, Steven F. Son, I. Emre Gunduz

The Summer Undergraduate Research Fellowship (SURF) Symposium

Energetic materials are currently manufactured using methods such as casting, which can only produce certain geometries. Additive manufacturing enables more flexible fabrication and the potential for improved material consistency. Additive manufacturing has transformed many industries, but has only recently been applied to the manufacturing of energetic materials. This paper describes the development of two processes to apply additive manufacturing methods to energetic materials. Method one applies a fused deposition modelling approach (FDM). 5 µm aluminum powder and PVDF were mixed and made into filaments using a Filabot Original filament extruder. Energetic filaments were created composed of 90:10, 80:20, and 75:25 …