Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Mechanical Engineering

Fiber-Optic Imaging In An Internal Combustion Engine Test Rig, Conor Martin, Michael Smyser, Aswin Ramesh, Greg Shaver, Terrence Meyer Aug 2016

Fiber-Optic Imaging In An Internal Combustion Engine Test Rig, Conor Martin, Michael Smyser, Aswin Ramesh, Greg Shaver, Terrence Meyer

The Summer Undergraduate Research Fellowship (SURF) Symposium

The formation of particulate matter (PM/soot), nitrogen oxides (NOx), and other byproducts of the combustion process in diesel engines is controlled by spatiotemporally varying quantities within the engine cylinders which traditional sensors cannot resolve. This study explores the use of an advanced sensing technique using an optical probe which can be used to produce highly spatiotemporally resolved in cylinder images of the flame formation during the combustion stroke. Using a fiber optic cable and custom lensing system adapted to fit a pre-existing pressure transducer port, light from within the cylinder can be transmitted through the imaging probe to a high …


Dynamic Modeling And Validation Of Micro-Chp Systems, Apurva Badithela, Neera Jain, Austin Nash Aug 2016

Dynamic Modeling And Validation Of Micro-Chp Systems, Apurva Badithela, Neera Jain, Austin Nash

The Summer Undergraduate Research Fellowship (SURF) Symposium

Micro-Combined Heat and Power (micro-CHP) units locally generate electricity to simultaneously provide power and heat for residential buildings. Apart from the potential benefits of reducing carbon emissions and increasing robustness to brownouts and blackouts, micro-CHP systems can be controlled to meet energy demands. Micro-CHP systems consist of a prime mover that generates electricity, such as a fuel cell, an internal combustion engine, or a Stirling engine, and a waste heat recovery system that enables utilization of heat generated as a byproduct of electricity generation. Often, a thermal energy storage system is integrated with micro-CHP systems, thereby decoupling, in time, the …


Movement And Distribution Of Bacteria Near Surfaces, Daniel A. Quinkert, Adib Ahmadzadegan, Arezoo M. Ardekani Aug 2016

Movement And Distribution Of Bacteria Near Surfaces, Daniel A. Quinkert, Adib Ahmadzadegan, Arezoo M. Ardekani

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bacteria are found everywhere in nature, including within human/animal bodies, biomedical devices, industrial equipment, oceans and lakes. They can be found in planktonic state within a bulk liquid phase or attached to surfaces with the potential to form biofilms. In this study we are interested in the movement and distribution of bacteria near surfaces. The concentrations and fluid interactions of bacteria were characterized at various distances from a surface. Psuedomonas putida F1 was observed in a suspension near a surface. Bacteria movements were visualized with an inverted microscope at 40x magnification. P. putida F1 exhibited greater density in close proximity …


High Strain Rate Experiments Of Energetic Material Binder, Roberto Rangel Mendoza, Michael Harr, Weinong Chen Aug 2016

High Strain Rate Experiments Of Energetic Material Binder, Roberto Rangel Mendoza, Michael Harr, Weinong Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Energetic materials, in particular HMX, is widely used in many applications as polymer bonded explosives (PBX) and rocket propellant. However, when damaged, HMX is known to be an unstable substance which renders it a hazardous material and in some cases unreliable. Finding critical mechanical conditions at high rates that render various forms of energetic materials as unreliable would be vital to understand the effects that vibrations and compression forces have on energetic materials. A better understanding would enable the ability to develop improvements in the manufacturing of PBX and rocker propellant. The method utilized to evaluate the mechanical properties of …


Modeling Of A Roll-To-Roll Plasma Cvd System For Graphene, Yudong Chen, Majed A. Alrefae, Anurag Kumar, Timothy S. Fisher Aug 2016

Modeling Of A Roll-To-Roll Plasma Cvd System For Graphene, Yudong Chen, Majed A. Alrefae, Anurag Kumar, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Graphene is a 2D carbon material that has extraordinary physical properties relevant to many industrial applications such as electronics, oxidation barrier and biosensors. Roll-to-roll plasma chemical vapor deposition (CVD) has been developed to manufacture graphene at large scale. In a plasma CVD chamber, graphene is grown on a copper foil as it passes through a high-temperature plasma region. The temperatures of the gas and the copper foil play important roles in the growth of graphene. Consequently, there is a need to understand the temperature and gas velocity distributions in the system. The heat generated in the plasma creates a thermal …


Effects Of Internal Egr On Modern Diesel Engines Internal Equipped With Vva At Idle, Erik R. Santini, Dheeraj B. Gosala, Gregory M. Shaver Aug 2016

Effects Of Internal Egr On Modern Diesel Engines Internal Equipped With Vva At Idle, Erik R. Santini, Dheeraj B. Gosala, Gregory M. Shaver

The Summer Undergraduate Research Fellowship (SURF) Symposium

Vehicle emissions regulations are continuing to grow more challenging requiring near-zero levels of pollutant emissions. Nitric oxide (NOx) emissions are heavily regulated with the emission limit expected to become 1/10th of its present limit by 2021. In order to meet the new regulations, improvements in both the engine and the exhaust aftertreatment system are required. Exhaust gas recirculation (EGR) is used to reduce the NOx produced by the engine while the aftertreatment system converts most of the engine-out emissions to safer gases before releasing them to the atmosphere. One of the main challenges with the aftertreatment system is that …


Development Of Data Analytics Tools For Acoustic Measurement Of Positive Displacement Machines, Dan Ding, Monika Ivantysynova, Paul Kalbfleisch Aug 2016

Development Of Data Analytics Tools For Acoustic Measurement Of Positive Displacement Machines, Dan Ding, Monika Ivantysynova, Paul Kalbfleisch

The Summer Undergraduate Research Fellowship (SURF) Symposium

Noise control is an important factor in evaluating the design of positive displacement machines. This research project aims to develop new tools in MATLAB, with emphasis on visual approaches, to comprehensively characterize the noise generated by positive displacement machines in spatial, temporal and frequency domains. Sound pressure level (SPL), sound intensity level (SIL) and loudness were calculated and plotted on a measurement surface surrounding the pump, which illustrates the spatial distribution of the sound field. In order to highlight the phenomenon within specific frequency bands, Butterworth filters were used to isolate desired frequencies, such that specific harmonic content or 1/3 …


Pore Scale Transport Of Miscible And Immiscible Fluids In Porous Media, Tolulope O. Odimayomi, Arezoo M. Ardekani Aug 2016

Pore Scale Transport Of Miscible And Immiscible Fluids In Porous Media, Tolulope O. Odimayomi, Arezoo M. Ardekani

The Summer Undergraduate Research Fellowship (SURF) Symposium

The separation of harmful or valuable substances entrapped in porous media has applications in processes such as enhanced oil recovery, diffusion in tissue, and aquifer remediation. In this study the motion and removal rate of immiscible and miscible solutions have been analyzed to gain understanding of solvent effectiveness as it is diluted due to diffusion or mixing within porous materials. The extraction of oil using water, a surfactant solution of 4% CTAB in water, and a foam produced form the surfactant solution is observed using two dimensional flows between parallel slides containing cylindrical obstacles. The fluid motion is visualized. The …


Investigation Of Aluminum Foams And Graphite Fillers For Improving The Thermal Conductivity Of Paraffin Wax-Based Phase Change Materials, Javieradrian Ruiz, Amy Marconnet, Yash Ganatra, John Howarter, Alex Bruce Aug 2016

Investigation Of Aluminum Foams And Graphite Fillers For Improving The Thermal Conductivity Of Paraffin Wax-Based Phase Change Materials, Javieradrian Ruiz, Amy Marconnet, Yash Ganatra, John Howarter, Alex Bruce

The Summer Undergraduate Research Fellowship (SURF) Symposium

Passive thermal management with phase change materials (PCMs) has become the one of the most promising methods to cool cell phone processors due to the relatively simple implementation and profound impact on processor temperatures. Enhancing the thermal properties of conventional PCMs, mainly thermal conductivity and latent heat storage, allows for an overall improved thermal management system. This study aims to improve the thermal conductivity of paraffin wax (a typical commercial PCM) by the introduction of an expanded graphite (EG) filler to form a paraffin wax composite, and then infiltration of the EG/paraffin composite into an aluminum foam matrix. The thermal …


Fluid Flow Thermometry Using Thermographic Phosphors, Gabriel J. Fenoglio, Humberto J. Detrinidad, Aman Satija, Alex D. Casey, Robert P. Lucht, Terrence R. Meyer Aug 2016

Fluid Flow Thermometry Using Thermographic Phosphors, Gabriel J. Fenoglio, Humberto J. Detrinidad, Aman Satija, Alex D. Casey, Robert P. Lucht, Terrence R. Meyer

The Summer Undergraduate Research Fellowship (SURF) Symposium

Phosphor thermometry is a non-intrusive thermometry technique that allows for spatially and temporally resolved surface temperature measurements. The thermographic method has been employed in a number of applications that include combustion, sprays, and gas flows. In the current work, we investigate the implementation of thermographic phosphors in liquid flows, which is of interest in a wide range of applications in heat transfer, fluid mechanics, and thermal systems. Zinc oxide doped with Zinc (ZnO:Zn) was the phosphor employed for experimentation due to its high emission intensity and insolubility. In order to explore this application, the phosphor powder was uniformly dispersed in …


The Influence Of Thermal Conditions On The Thermomechanics Of Particulate-Composite, Mock Explosive Samples Under Near-Resonant Excitation, Jaylon B. Tucker, Allison R. Range, Jeffrey F. Rhoads Aug 2016

The Influence Of Thermal Conditions On The Thermomechanics Of Particulate-Composite, Mock Explosive Samples Under Near-Resonant Excitation, Jaylon B. Tucker, Allison R. Range, Jeffrey F. Rhoads

The Summer Undergraduate Research Fellowship (SURF) Symposium

Vapor detection is one of the most effective ways to find hidden plastic-bonded explosives in the field today. In recent years, it has been demonstrated that providing near-resonant vibratory excitation to explosives dramatically increases their vapor pressure, allowing for easier detection. Unfortunately, there currently exists a limited understanding of the thermomechanics of energetic material. This study seeks to help fill this technical void by exploring the thermomechanics of mock plastic-bonded explosives using direct mechanical excitation with varying thermal conditions. Using two different ambient thermal boundary conditions (insulated geometric boundaries and boundaries with free convection), a 7" by 10" by 0.5" …


Relative Contributions Of Inelastic Phonon Scattering And Elastic Phonon Scattering To Thermal Boundary Conductance Across Solid Interfaces, Mengxi Zhao, Zexi Lu, Xiulin Ruan Aug 2016

Relative Contributions Of Inelastic Phonon Scattering And Elastic Phonon Scattering To Thermal Boundary Conductance Across Solid Interfaces, Mengxi Zhao, Zexi Lu, Xiulin Ruan

The Summer Undergraduate Research Fellowship (SURF) Symposium

The knowledge of inelastic phonon scattering is crucial for the understanding of thermal boundary conductance across solid interfaces. Several traditional theoretical models such as the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM) assume that the elastic phonon scattering drives the thermal transport across the interface. But there are experiments indicating that the inelastic phonon scattering plays an important part in the interfacial thermal energy conduction as well. We use nonequilibrium molecular dynamics (NEMD) to predict the inelastic phonon conductance across Cu/Si interface. Temperature distribution across Cu/Si interface has been obtained from the simulation results, and a temperature …


Laser Assisted Manufacturing: A Comparison Of Mechanical Properties Between Lam And Conventional Manufacturing Techniques, William Blakeslee, Neil S. Bailey, Kyung-Min Hong, Shunyu Liu, Yung C. Shin Aug 2016

Laser Assisted Manufacturing: A Comparison Of Mechanical Properties Between Lam And Conventional Manufacturing Techniques, William Blakeslee, Neil S. Bailey, Kyung-Min Hong, Shunyu Liu, Yung C. Shin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Laser assisted manufacturing methods, such as direct metal deposition (DMD) and laser beam welding (LBW), are promising methods because of their higher precision and greater productivity when compared to traditional manufacturing methods. Because these methods are relatively new, the mechanical properties of samples produced by laser assisted manufacturing are not well understood. In this study the mechanical properties of samples produced by laser assisted manufacturing methods are analyzed and compared with data obtained from traditional manufacturing methods. The DMD process used Fe-TiC and Ti-TiC metal matrix composites, while LBW used AISI 304 stainless steel. The results vary widely with the …


X-Ray And Laser Investigation Of High Pressure Sprays, Wilbert C. Slowman, Lane E. Shultz, Terence R. Meyer Aug 2016

X-Ray And Laser Investigation Of High Pressure Sprays, Wilbert C. Slowman, Lane E. Shultz, Terence R. Meyer

The Summer Undergraduate Research Fellowship (SURF) Symposium

The diagnostics of multiphase flows is important to understand the correlation of parameters such as nozzle geometry, flow velocity, liquid breakup characteristics, atomization, and mass distribution. Investigation of each of these parameters can lead to various improvements on design and optimization, for example, of combustion in gas turbines and rocket engines. For this project, the X-ray and optical diagnostics of multiphase flows in propulsion is investigated for high pressures. Two x-ray tube sources are used to illuminate the spray, and the images are captured on phosphor plates coupled to high-speed cameras. Reconstruction of the mass distribution is accomplished using computer …


Dynamic Modeling Of Contact-Mode Triboelectric Generators By Lagrange’S Equations, Sean M. Gauntt, James Gibert Aug 2016

Dynamic Modeling Of Contact-Mode Triboelectric Generators By Lagrange’S Equations, Sean M. Gauntt, James Gibert

The Summer Undergraduate Research Fellowship (SURF) Symposium

Electret based energy scavenging devices utilize electrostatic induction to convert mechanical energy into electrical energy. Uses for these devices include harvesting ambient energy in the environment and acting as sensors for a range of applications. These types of devices have been used in MEMS applications for over a decade. However, recently there is an interest in Triboelectric generators/harvesters, i.e., electret based harvesters that relies on triboelectrification as well as electrostatic induction. The literature is filled with a variety of designs for the latter devices, constructed from materials ranging from paper and thin films; rendering the generators lightweight, flexible and inexpensive. …


Dynamic Behavior Of A Clamped-Clamped Bi-Stable Laminate For Energy Harvesting, Ajay V. Kumar, Andres F. Arrieta Ph.D., Myungwon Hwang Aug 2016

Dynamic Behavior Of A Clamped-Clamped Bi-Stable Laminate For Energy Harvesting, Ajay V. Kumar, Andres F. Arrieta Ph.D., Myungwon Hwang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Multi-stable laminates have many applications in morphing structures, energy harvesting devices, and metamaterials due to the specific characteristics attributed to the exhibited stable states. Changes between stable states allow for large deflections, on-demand variation of the stiffness of compliant structures embedded within these elements, and control of effective dynamic properties in periodic lattices. These changes in state can be accessed via a snap-through instability triggered by introducing a well-defined activation energy. The resulting oscillations could enable broadband energy harvesting via piezoelectric transduction and resistive circuits. In this paper, a clamped-clamped bi-stable laminate is studied to understand the behavior of the …


Applications Of Additive Manufacturing Techniques In Making Energetic Materials, Peter A. Cattani, Trevor J. Fleck, Jeff F. Rhoads, Steven F. Son, I. Emre Gunduz Aug 2016

Applications Of Additive Manufacturing Techniques In Making Energetic Materials, Peter A. Cattani, Trevor J. Fleck, Jeff F. Rhoads, Steven F. Son, I. Emre Gunduz

The Summer Undergraduate Research Fellowship (SURF) Symposium

Energetic materials are currently manufactured using methods such as casting, which can only produce certain geometries. Additive manufacturing enables more flexible fabrication and the potential for improved material consistency. Additive manufacturing has transformed many industries, but has only recently been applied to the manufacturing of energetic materials. This paper describes the development of two processes to apply additive manufacturing methods to energetic materials. Method one applies a fused deposition modelling approach (FDM). 5 µm aluminum powder and PVDF were mixed and made into filaments using a Filabot Original filament extruder. Energetic filaments were created composed of 90:10, 80:20, and 75:25 …


A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca Aug 2016

A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca

The Summer Undergraduate Research Fellowship (SURF) Symposium

External gear pump is an important category of positive displacement fluid machines used to perform the mechanical–hydraulic energy conversions in many fluid power applications. An efficient numerical simulation program is needed to simulate the system in order to provide a direction for design purpose. The model consists of a lumped parameter fluid dynamic model and a model that simulates the radial micro-motions of the gear’s axes of rotation. The system consists of a set of ordinary differential equations related to the conservation on mass of the internal control volumes of the pump, which are given by the tooth space volumes …


Effect Of Aggregation And Particle Size On The Thermal Conductivity Of Nickel-Epoxy Nanocomposites, Jacob M. Faulkner, Xiangyu Li, Xiulin Ruan Dr. Aug 2016

Effect Of Aggregation And Particle Size On The Thermal Conductivity Of Nickel-Epoxy Nanocomposites, Jacob M. Faulkner, Xiangyu Li, Xiulin Ruan Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microprocessor advancements have been stunted in recent years by inadequate means of heat dissipation as power continues to grow and size continues to shrink. One way to increase thermal conductivity while maintaining electrical insulation is to add metal nanoparticles to a polymer matrix. This cheap material has become a popular thermal interface for this reason. However, optimization of the interface is dependent upon a number of factors including particle size, shape, orientation, and aggregation. Various theoretical models and numerical approximations have been developed to find the effective thermal conductivity of such nanocomposites, but none has been able to fully incorporate …


Laser-Assisted Microchanneling On Pmma Substrate Utilizing Two-Pass Fabrication Method, Sijie Zhang, Yung C. Shin Aug 2016

Laser-Assisted Microchanneling On Pmma Substrate Utilizing Two-Pass Fabrication Method, Sijie Zhang, Yung C. Shin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microchannel is widely used in microfluidic devices for mixing, chemical reaction, detection, particle separation and etc. CO2 laser-based microchanneling of PMMA as a low cost, rapid, noncontact fabrication method has attracted the attention of industry. However, the typical V-shape grooves fabricated by CO2 laser microchanneling have limitations since the V-shape grooves will affect the flow behavior and heat transfer of the fluid, which are important to the performance of microfluidic devices. A two-pass fabrication method is proposed and investigated in this paper to improve the quality of the PMMA microchannel fabricated by CO2 laser. It was found …


The Effect Of Honeycomb Cavity: Acoustic Performance Of A Double-Leaf Micro Perforated Panel, Yuxian Huang, Kai Ming Li Aug 2016

The Effect Of Honeycomb Cavity: Acoustic Performance Of A Double-Leaf Micro Perforated Panel, Yuxian Huang, Kai Ming Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

A micro perforated panel (MPP) is a device consisting of a thin plate and submillimeter perforations for reducing low frequency noise. MPPs have many advantages compared to traditional sound absorption materials, such as durability and designability, and they can be used in a variety of places such as room interior designs, passenger and crew compartments of aircrafts and combustion engines. The models in this study were designed and fabricated with the latest 3-D printing technology. The transmission loss and sound absorption coefficient of the 3-D printed double-leaf MPPs with honeycomb cavities were studied. According to the established theory, MPPs work …


Development Of A Diode-Laser Absorption-Spectroscopy Sensor For Real-Time Control Of Combustion Systems, Rahul P. Balla, Christopher S. Goldenstein Aug 2016

Development Of A Diode-Laser Absorption-Spectroscopy Sensor For Real-Time Control Of Combustion Systems, Rahul P. Balla, Christopher S. Goldenstein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Tunable diode-laser absorption spectroscopy (TDLAS) sensors are widely used for measuring gas properties. These sensors offer several advantages including: small footprint, affordability, applicability to harsh environments, rapid time response, and calibration-free operation. As a result, diode-laser sensors can be integrated into control-systems and have previously been used to control gas-turbine combustors. In this study, high-frequency sine waves were generated continuously by a LabVIEW program to simultaneously scan and modulate the wavelength and intensity of a diode laser. The modulated laser light was transmitted 20 cm through the air and measured on a photodetector. Custom-built lock-in software was used to acquire …


Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee Aug 2016

Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrocephalus is a neurological disorder that typically requires a long-term implantation of a shunt system to manage its symptoms. These shunt systems are notorious for their extremely high failure rate. More than 40% of all implanted shunt systems fail within the first year of implantation. On average, 85% of all hydrocephalus patients with shunt systems undergo at least two shunt-revision surgeries within 10 years of implantation. A large portion of this high failure rate can be attributed to biofouling-related obstructions and infections. Previously, we developed flexible polyimide-based magnetic microactuators to remove obstructions formed on hydrocephalus shunts. To test the long-term …