Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Structure-Functionality Relationship Of Collagen Scaffolds For Tissue Engineering, Seungman Park Oct 2014

Structure-Functionality Relationship Of Collagen Scaffolds For Tissue Engineering, Seungman Park

Open Access Dissertations

Tissue engineering is a promising technology that enables scientists to create artificial organs or replace damaged tissues using animal cells and other components. For successful tissue regeneration, many factors should be taken into account, however, three components are most crucial: cell, scaffold, and soluble factor(s). In order to check the functionality after regeneration of desired tissues, various approaches have been attempted, depending on the physical, biological, and chemical properties of the tissues. Recently, the importance of the extracellular matrix (ECM) microstructure is being considered to be important in this regard. The ECM is closely associated with various functional properties of …


Understanding Preferred Leg Stiffness And Layered Control Strategies For Locomotion, Zhuohua H. Shen Oct 2014

Understanding Preferred Leg Stiffness And Layered Control Strategies For Locomotion, Zhuohua H. Shen

Open Access Dissertations

Despite advancement in the field of robotics, current legged robots still cannot achieve the kind of locomotion stability animals and humans have. In order to develop legged robots with greater stability, we need to better understand general locomotion dynamics and control principles. Here we demonstrate that a mathematical modeling approach could greatly enable the discovery and understanding of general locomotion principles. ^ It is found that animal leg stiffness when scaled by its weight and leg length falls in a narrow region between 7 and 27. Rarely in biology does such a universal preference exist. It is not known completely …


Design, Development And Testing Of A Balance Board With Variable Torsional Stiffness And Time Delay, Denise Renee Cruise Jul 2014

Design, Development And Testing Of A Balance Board With Variable Torsional Stiffness And Time Delay, Denise Renee Cruise

Open Access Theses

The ability to balance and maintain upright posture can decline for a variety of reasons, such as aging and neuromuscular impairment. As the ability to balance declines, the risk of falling increases. Falls are a major cause of injury, and often lead to a dramatic decline in quality of life. Currently, to alleviate balance deficiencies, people participate in balance training, which most commonly refers to standing on an unstable balance board; the most common boards used are either passive wobble boards, or more advanced commercial systems such as the Biodex System SD ® or the Neurocom SMART Balance Master® . …


A Novel Three Degree-Of-Freedoms Oscillation System Of Insect Flapping Wings, Yi Qin Apr 2014

A Novel Three Degree-Of-Freedoms Oscillation System Of Insect Flapping Wings, Yi Qin

Open Access Theses

We propose an oscillation system to replicate the dynamic behavior of flapping wings, inspired by insect flight muscles. In particular, we study the flight of the fruit fly Drosophila virilis . We model the wing as a rigid body with three degree-of-freedom, described by three Euler angles: the stroke angle, the rotation angle and the deviation angle. Insect flight muscles are separated into two types: power muscles and control muscles. One actuator and one torsional spring at the stroke angle act as the power muscles. Two torsional springs at the rotation angle and the deviation angle mimic the control muscles. …


Hybrid Opto-Electrokinetic Technique For Micro/Nanomanipulation: Towards Application Of A Novel Non-Invasive Manipulation Technique In Microbiological Assay, Jae-Sung Kwon Oct 2013

Hybrid Opto-Electrokinetic Technique For Micro/Nanomanipulation: Towards Application Of A Novel Non-Invasive Manipulation Technique In Microbiological Assay, Jae-Sung Kwon

Open Access Dissertations

This dissertation explores various physical mechanisms of the Rapid Electrokinetic Patterning (REP) technique suggested for rapid and precise on-chip manipulation of colloids and fluids, and bio-compatibility of the technique for biological applications. REP is a hybrid opto-electrokinetic technique that is driven by the simultaneous application of an AC electric field and a heating source. It can not only effectively transport and manipulate a fluid but also concentrate and pattern particles suspended in the fluid through the combined effect of an electrohydrodynamic flow, electrostatic colloidal interactions and an electrothermal microfluidic flow. These capabilities make REP a promising tool which can provide …


Modeling Tools For Conformal Orthotic Devices, Steven David Riddle Jan 2013

Modeling Tools For Conformal Orthotic Devices, Steven David Riddle

Open Access Theses

The purpose of this thesis is to advance the design of conformal orthotic devices through the development of two modeling tools to address knowledge gaps in the field.

The field of human orthotics has been continually troubled by identifying successful methods of harnessing devices to the body. Past orthotics have utilized a rigid framework with minimal degrees of freedom (DOFs) driven by hard actuators attached to the body at select anchor points. Many devices design the structure and anchor points such that they reduce the degrees of freedom of a targeted joint, limiting the user's mobility and often causing the …


Modeling Of Legged Locomotion With A Suspended Load In The Sagittal Plane, Karna P. Potwar Jan 2013

Modeling Of Legged Locomotion With A Suspended Load In The Sagittal Plane, Karna P. Potwar

Open Access Theses

Walking or running while carrying loads has always been a tedious task, more so when the loads are heavy. Such a task of carrying loads not only requires extra effort but also leads to physical pain and in some cases injury. Prior studies on human locomotion with a suspended load have used models that are restricted in their DOFs and so are not able to take into account the fore aft movement in human beings. The objective of this thesis is to model the dynamics of sagittal plane center-of-mass locomotion with a suspended load and apply findings to carrying loads …