Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Model Predictive Control Of Energy Systems For Heat And Power Applications, Chethan Ramakrishna Reddy Jan 2022

Model Predictive Control Of Energy Systems For Heat And Power Applications, Chethan Ramakrishna Reddy

Dissertations, Master's Theses and Master's Reports

Building and transportation sectors together account for two-thirds of the total energy consumption in the US. There is a need to make these energy systems (i.e., buildings and vehicles) more energy efficient. One way to make grid-connected buildings more energy efficient is to integrate the heating, ventilation and air conditioning (HVAC) system of the building with a micro-scale concentrated solar power (MicroCSP) sys- tem. Additionally, one way to make vehicles driven by internal combustion engine (ICE) more energy efficient is by integrating the ICE with a waste heat recovery (WHR) system. But, both the resulting energy systems need a smart …


A Combustion Model For Multi-Component Fuels Based On Relative Reactivity And Molecular Structure, Arash Jamali Jan 2021

A Combustion Model For Multi-Component Fuels Based On Relative Reactivity And Molecular Structure, Arash Jamali

Dissertations, Master's Theses and Master's Reports

A reliable multi-component surrogate fuel model needs to be able to represent both physical properties and chemical kinetics of a real fuel. However, enhancing the fidelity of a model with detailed description of physical and chemical behavior of all fuel components found in real fuels is limited by the prohibitive computational load to calculate the combustion chemistry of the fuel. Hence, it is desirable to achieve computational efficiency by reducing the number of chemical surrogates at the minimum expense of prediction accuracy. The objective of this work is to develop a model that can simulate the oxidation of multi-component fuels …


Optimization And Comparison Of Over-Expanded And Other High Efficiency Four-Stroke Spark-Ignited Boosted Engines, Zhuyong Yang Jan 2019

Optimization And Comparison Of Over-Expanded And Other High Efficiency Four-Stroke Spark-Ignited Boosted Engines, Zhuyong Yang

Dissertations, Master's Theses and Master's Reports

Recent fuel economy and emission regulations are the major concern of the research and development of modern internal combustion engine. Such technologies include variable valve timing (VVT), direct injection (DI), turbocharging, downsizing, and over-expanded cycle are used by many manufacturers to improve engine fuel economy or increase power density.

Current Atkinson cycle technology in the production engine is mainly realized by an advanced valvetrain system to reduce the effective compression ratio while maintaining the same expansion ratio. Another approach to realize over-expanded cycle engine is to utilize a multi-link cranktrain mechanism. Although the Atkinson cycle was originally patented in the …


An Experimental And Computational Study Of Fuel Spray Interaction: Fundamentals And Engine Applications, Le Zhao Jan 2018

An Experimental And Computational Study Of Fuel Spray Interaction: Fundamentals And Engine Applications, Le Zhao

Dissertations, Master's Theses and Master's Reports

An efficient spray injection results in better vaporization and air-fuel mixing, leading to combustion stability and reduction of emissions in the internal combustion (IC) engines. The impingement of liquid fuels on chamber wall or piston surface in IC engines is a common phenomenon and fuel film formed in the spray-piston or cylinder wall impingement plays a critical role in engine performance and emissions. Therefore, the study of the spray impingement on the chamber wall or position surface is necessary.

To understand the spray-wall interaction, a single droplet impingement on a solid surface with different conditions was first examined. The droplet-wall …


Design Of Real-Time Combustion Feedback System And Experimental Study Of An Rcci Engine For Control, Jayant Kumar Arora Jan 2016

Design Of Real-Time Combustion Feedback System And Experimental Study Of An Rcci Engine For Control, Jayant Kumar Arora

Dissertations, Master's Theses and Master's Reports

Premixed compression ignition (PCI) technologies offer high efficiency and low emissions but are usually confined by limited operation range as well as high pressure rise and heat release rate. In this work, a more recently developed PCI mode is explored where in-cylinder blending of two fuels with different auto-ignition characteristics (diesel and gasoline) is utilized to create reactivity stratification such that heat release rate and combustion timing can be controlled. This mode has been defined as Reactivity Controlled Compression Ignition (RCCI).

As part of this thesis, the main aim is to study various parameters that can be used to control …