Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Marquette University

Series

Monte Carlo

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

A Quasi-Monte Carlo Solver For Thermal Radiation In Participating Media, Joseph Farmer, Somesh Roy Feb 2020

A Quasi-Monte Carlo Solver For Thermal Radiation In Participating Media, Joseph Farmer, Somesh Roy

Mechanical Engineering Faculty Research and Publications

The Monte Carlo (MC) method is the most accurate method for resolving radiative heat transfer in participating media. However, it is also computationally prohibitive in large-scale simulations. To alleviate this, this study proposes a quasi-Monte Carlo (QMC) method for thermal radiation in participating media with a focus on combustion-related problems. The QMC method employs low-discrepancy sequences (LDS) in place of the traditional random numbers. Three different low-discrepancy sequences – Sobol, Halton, and Niederreiter – were examined as part of this work. The developed QMC method was first validated against analytical solutions of radiative heat transfer in several one-dimensional configurations. Then …


An Efficient Monte Carlo-Based Solver For Thermal Radiation In Participating Media, Joseph Farmer, Somesh Roy Jan 2019

An Efficient Monte Carlo-Based Solver For Thermal Radiation In Participating Media, Joseph Farmer, Somesh Roy

Mechanical Engineering Faculty Research and Publications

Monte Carlo-based solvers, while well-suited for accurate calculation of complex thermal radiation transport problems in participating media, are often deemed computationally unattractive for use in the solution of real-world problems. The main disadvantage of Monte Carlo (MC) solvers is their slow convergence rate and relatively high computational cost. This work presents a novel approach based on a low-discrepancy sequence (LDS) and is proposed for reducing the error bound of a Monte Carlo-based radiation solver. Sobols sequence – an LDS generated with a bit-by-bit exclusive-or operator – is used to develop a quasi-Monte Carlo (QMC) solver for thermal radiation in this …


Effect Of Multiphase Radiation On Coal Combustion In A Pulverized Coal Jet Flame, Bifen Wu, Somesh Roy, Xinyu Zhao, Michael F. Modest Aug 2017

Effect Of Multiphase Radiation On Coal Combustion In A Pulverized Coal Jet Flame, Bifen Wu, Somesh Roy, Xinyu Zhao, Michael F. Modest

Mechanical Engineering Faculty Research and Publications

The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and …