Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Extrusion Of Uniform-Diameter Polyetheretherketone-Magnesium Phosphate Bio-Composite Filaments For 3d Printing Of Design-Specific Multi-Functional Implants, Vijay K. Bokam, Surendrasingh Y. Sonaye, Phaniteja Nagaraju, Harsha P.S. Naganaboyina, Prabaha Sikder Jul 2023

Extrusion Of Uniform-Diameter Polyetheretherketone-Magnesium Phosphate Bio-Composite Filaments For 3d Printing Of Design-Specific Multi-Functional Implants, Vijay K. Bokam, Surendrasingh Y. Sonaye, Phaniteja Nagaraju, Harsha P.S. Naganaboyina, Prabaha Sikder

Mechanical Engineering Faculty Publications

Polyetheretherketone (PEEK) is a high-performance polymer material for developing implants for orthopedic, spinal, cranial, maxillofacial, and dentistry applications. However, the major limitation of PEEK implants is their bioinertness, i.e., their incapability to integrate with tissues. Therefore, prior efforts have always focused on developing hydroxyapatite (HA) coatings on PEEK or PEEK-HA composites. However, in this study, we engineered a highly novel bioceramic known as amorphous magnesium phosphate (AMP), which surpasses the bioactivity and biodegradation kinetics of HA. Subsequently, we incorporated AMP in PEEK to develop a unique PEEK-AMP bioactive composite in the form of uniform-diameter filaments, such that it can be …


Introduction To Data-Driven Systems For Plastics And Composites Manufacturing, Saeed Farahani, Srikanth Pilla, Yun Zhang, Fausto Tucci May 2023

Introduction To Data-Driven Systems For Plastics And Composites Manufacturing, Saeed Farahani, Srikanth Pilla, Yun Zhang, Fausto Tucci

Mechanical Engineering Faculty Publications

Applications of high-performance plastics and composites have widely been expanded to various industries due to their superior properties, such as high strength-to-weight ratio, chemical resistance, and thermal/electrical insulation. However, the numerous possible combinations of polymers and reinforcements/fillers, the variability of these materials, and their complex manufacturing processes pose challenges in terms of efficiently developing new plastics and composites, accurately modeling their properties, and effectively monitoring and controlling their manufacturing processes. Integrating data-driven techniques, such as machine learning, artificial intelligence, and big data analytics, is a promising pathway to overcome these challenges as it is demonstrated by the state-of-the-art research works …


Hybrid Fes-Exoskeleton Control: Using Mpc To Distribute Actuation For Elbow And Wrist Movements, Nathan Dunkelberger, Jeffrey Berning, Eric M. Schearer, Marcia K. O'Malley Apr 2023

Hybrid Fes-Exoskeleton Control: Using Mpc To Distribute Actuation For Elbow And Wrist Movements, Nathan Dunkelberger, Jeffrey Berning, Eric M. Schearer, Marcia K. O'Malley

Mechanical Engineering Faculty Publications

Introduction: Individuals who have suffered a cervical spinal cord injury prioritize the recovery of upper limb function for completing activities of daily living. Hybrid FES-exoskeleton systems have the potential to assist this population by providing a portable, powered, and wearable device; however, realization of this combination of technologies has been challenging. In particular, it has been difficult to show generalizability across motions, and to define optimal distribution of actuation, given the complex nature of the combined dynamic system. Methods: In this paper, we present a hybrid controller using a model predictive control (MPC) formulation that combines the actuation of both …


Coaxial Jets With Disparate Viscosity: Mixing And Laminarization Characteristics, Mustafa Usta, M. R. C. Ahmad, G. Pathikonda, I. Khan, P. Gillis, D. Ranjan, C. K. Aidun Jan 2023

Coaxial Jets With Disparate Viscosity: Mixing And Laminarization Characteristics, Mustafa Usta, M. R. C. Ahmad, G. Pathikonda, I. Khan, P. Gillis, D. Ranjan, C. K. Aidun

Mechanical Engineering Faculty Publications

Mixing of fluids in a coaxial jet is studied under four distinct viscosity ratios, m = 1, 10, 20 and 40, using highly resolved large-eddy simulations (LES), particle image velocimetry and planar laser-induced fluorescence. The accuracy of predictions is tested against data obtained by the simultaneous experimental measurements of velocity and concentration fields. For the highest and lowest viscosity ratios, standard RANS models with unclosed terms pertaining to viscosity variations are employed. We show that the standard Reynolds-averaged Navier-Stokes (RANS) approach with no explicit modelling for variable-viscosity terms is not applicable whereas dynamic LES models provide high-quality agreement with the …


Data-Driven Dynamic Motion Planning For Practical Fes-Controlled Reaching Motions In Spinal Cord Injury, Derek N.N. Wolf, Antonie J. Van Den Bogert, Eric M. Schearer Jan 2023

Data-Driven Dynamic Motion Planning For Practical Fes-Controlled Reaching Motions In Spinal Cord Injury, Derek N.N. Wolf, Antonie J. Van Den Bogert, Eric M. Schearer

Mechanical Engineering Faculty Publications

Functional electrical stimulation (FES) is a promising technology for restoring reaching motions to individuals with upper-limb paralysis caused by a spinal cord injury (SCI). However, the limited muscle capabilities of an individual with SCI have made achieving FES-driven reaching difficult. We developed a novel trajectory optimization method that used experimentally measured muscle capability data to find feasible reaching trajectories. In a simulation based on a real-life individual with SCI, we compared our method to attempting to follow naive direct-to-target paths. We tested our trajectory planner with three control structures that are commonly used in applied FES: feedback, feedforward-feedback, and model …