Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

Enhancing Bifacial Pv Efficiency With The Addition Of A Rear Side Reflector, Neila Watson Jun 2022

Enhancing Bifacial Pv Efficiency With The Addition Of A Rear Side Reflector, Neila Watson

Honors Theses

Bifacial photovoltaics are an expanding sector of solar electricity production, collecting solar energy on the front, back, and sides of the module. This increases the efficiency by around 10% to 30% over a typical mono facial cell, which only collects sunlight on the front. However, the performance of bifacial PV arrays depends on a variety of factors, including temperature, shadows, solar insolation, and set-up geometry. The geometry is affected by the tilt angle, the azimuth angle, the height from the ground to the panel, and the reflectance from the ground surface. The addition of a reflector, usually white in color …


Design & Evaluation Of Cooling Systems For Photovoltaic Modules, Peter Leary Apr 2019

Design & Evaluation Of Cooling Systems For Photovoltaic Modules, Peter Leary

Honors Theses

There is a persistent need for further development and implementation of renewable energy sources, such as wind and solar. Due to the increase in global population, the disappearance of fossil fuels, and the reality of climate change, renewable power is needed now more than ever. One such renewable power technology is solar photovoltaic, otherwise known as PV. These modules work via silicon cells which are as semiconductors, outputting electrical energy when incident with solar radiation. This is done by separating electrons and protons within the cell. One of the largest issues with PV technology is that there is a linear …


Applications Of Latent Heat Storage Using Phase Change Materials, Daniel Giroux Jun 2018

Applications Of Latent Heat Storage Using Phase Change Materials, Daniel Giroux

Honors Theses

Thermal Storage Systems are gaining more attention in recent years with the increased emphasis on more renewable energy sources. Energy storage is necessary whenever there is greater amounts of energy being produced than is required. Various improvements to the conventional heat storage system can be made by integrating latent heat storage into the conventional heat storage system. Latent heat storage can be utilized for thermal storage applications by using phase change materials, materials that will undergo a change in their physical state in the temperature range desired for heat storage.

Analysis was conducted on four different waxes considering the waxes …


Analysis Of The Properties Of Supercapacitors And Possible Applications For The Technology, Vincent Oliveto Jun 2018

Analysis Of The Properties Of Supercapacitors And Possible Applications For The Technology, Vincent Oliveto

Honors Theses

Supercapacitors have a lot of excellent qualities that would make them a great substitute for batteries when it comes to electrical energy storage systems. Supercapacitors can discharge and charge very rapidly, they have a lifespan in the realm of millions of cycles, and they are much more efficient than batteries. Unfortunately, they cannot hold nearly as much charge as batteries. This paper seeks to further investigate the properties of supercapacitor technology and the best way to exploit these properties with the purpose of integrating them into renewable energy systems. There is currently a lot of research occurring around the world …


Multicomponent Working Fluids In Organic Rankine Cycle Evaporators, Jennifer Fromm Mar 2018

Multicomponent Working Fluids In Organic Rankine Cycle Evaporators, Jennifer Fromm

Honors Theses

Organic Rankine cycles are a promising technology to convert waste heat energy into usable mechanical or electric power, giving them the potential to reduce fossil fuel emissions generated by traditional energy generation. The heat exchangers of these devices are of particular interest, as maximizing energy extraction from these free heat sources will increase net electrical power output. For this project I created a model to predict the effects of mixture working fluids on the evaporator performance of an organic Rankine cycle generator for a wide range of waste heat source temperatures. This model combines empirically derived heat exchanger performance parameters …


Triboelectric Turbines: Design And Construction Of A Multi-Rotor Counter-Rotating Wind Turbine Utilizing Direct-Current Triboelectric Nanogenerators, Adam Forti Jun 2017

Triboelectric Turbines: Design And Construction Of A Multi-Rotor Counter-Rotating Wind Turbine Utilizing Direct-Current Triboelectric Nanogenerators, Adam Forti

Honors Theses

Direct-current triboelectric nanogenerators (DC-TENG) harness the friction generated between dissimilar rotating materials and convert it to useable electrical power. One of the many potential applications of this technology is in small scale renewable energy. A wind turbine was designed in which multiple DC-TENG generators would be attached to turbine blades of varying dimensions. This project involved the design and construction of several rotating DC-TENG prototypes, followed by measuring the electrical output of each nanogenerator at various rotational speeds.


Design Of A New Ice Thermal Energy Storage System, Andrew Fontaine Jun 2017

Design Of A New Ice Thermal Energy Storage System, Andrew Fontaine

Honors Theses

Over the past 30 years, alternative energy sources and concepts have been researched and desired as current energy resources are diminishing. One such alternative energy concept is an Ice Thermal Energy Storage system (ITES). ITES systems both store and create ice that helps them serve as a cold sink that can be used to cool down buildings using only the ice in the system. This project explores a new and more complex type of ITES system that decreases the heat transfer into the system, lengthens the amount of time the ice in the system stays frozen, and lessens the amount …


Gasoline Confined In Nano-Porous Media, Matthew Giso Jun 2016

Gasoline Confined In Nano-Porous Media, Matthew Giso

Honors Theses

The heat of combustion was determined for gasoline confined in nano-porous media of differing pore size by bomb calorimetry. The heat of combustion of the confined fuels was comparable to that of bulk within the experimental uncertainty. This suggests that all of the confined fuel burns without any flame quenching and no chemical interactions at the interface between pore walls and fuel mitigate combustion.


Heat Of Fusion Of Primary Alcohol Confined In Nanopores, Harrisonn Griffin Jun 2016

Heat Of Fusion Of Primary Alcohol Confined In Nanopores, Harrisonn Griffin

Honors Theses

Melting behavior of physically confined 1-decanol in nano porous silica was probed using a Differential Scanning Calorimeter (DSC). In agreement with the Gibbs-Thomson prediction, we observe that the melting temperature of the confined 1-decanol scales inversely with the physical size of the pores. Contrary to the assumption used in developing the Gibbs-Thomson equation, however, the apparent heat of fusion decreases as the pore size decreases. Previously, several models have been proposed where interfacial layers of molecules do not participate in the phase transition and thereby would not contribute to the heat of fusion. While these could reconcile the seeming contradiction, …


Looking For Small Changes In Heat Capacity Using A Differential Scanning Calorimeter, Will Linthicum Jun 2014

Looking For Small Changes In Heat Capacity Using A Differential Scanning Calorimeter, Will Linthicum

Honors Theses

One of the major difficulties in development of renewable energy is the lack of an adequate and economical means of energy storage. In the case of concentrated solar power a large mass of thermal fluid is required to store a reasonable amount of energy. This is primarily because the fluids tend to have a low specific heat capacity. Formulating composites of these fluids can enhance their specific heat capacity and avails opportunities to make concentrated solar power more attractive. In most cases, the specific heat capacity of composite materials is a weighted average of the individual component heat capacities. This, …