Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Structures and Materials

PDF

2023

Institution
Keyword
Publication
Publication Type

Articles 1 - 14 of 14

Full-Text Articles in Mechanical Engineering

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams Dec 2023

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams

All Dissertations

While Carbon Fiber Reinforced Polymers (CFRPs) have exceptional mechanical properties concerning their overall weight, their failure profile in demanding high-stress environments raises reliability concerns in structural applications. Two crucial limiting factors in CFRP reliability are low-strain material degradation and low fracture toughness. Due to CFRP’s low strain degradation characteristics, a wide variety of interlaminar damage can be sustained without any appreciable change to the physical structure itself. This damage suffered by the energy transfer from high- stress levels appears in the form of microporosity, crazes, microcracks, and delamination in the matrix material before any severe laminate damage is observed. This …


Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan Nov 2023

Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan

Symposium of Student Scholars

"KWAD" or "KSU all-Weather Autonomous Drone" project was sponsored by Ultool, LLC to the KSU Research and Service Foundation to create a lightweight drone capable of capturing HD video during all-weather operations. The conditions of all-weather operation include rainfall of one inch per hour and wind speeds of up to twenty miles per hour. In addition, a global minimum structural safety factor of two is required to ensure the system's integrity in extreme weather conditions. Potential mission profiles include autonomous aerial delivery, topological mapping in high moisture areas, security surveillance, search and rescue operations, emergency transportation of medical supplies, and …


Empowering Student Success: Unlocking The Potential Of Project-Based Steel Design Education, Aly Mousaad Aly Jun 2023

Empowering Student Success: Unlocking The Potential Of Project-Based Steel Design Education, Aly Mousaad Aly

Faculty Publications

In the pursuit of student success, it is essential to acknowledge that a singular teaching style does not universally cater to all students. The educator's crucial role lies in creating an optimal learning environment that fosters students' endeavors to excel. This endeavor transcends mere classroom success or employment prospects, encompassing a broader impact on societal well-being. An experiential learning approach, where students actively engage in practical tasks, emerges as the most effective mode of instruction. Integrating project-based learning activities into the curriculum holds immense potential for enhancing student learning. Additionally, the utilization of analysis software tools like FTool and STAAD …


Feasibility Of Thermoplastic Extrusion Welding As A Joining Method For Vacuum-Assisted Additively Manufactured Tooling, Chase C. Flaherty May 2023

Feasibility Of Thermoplastic Extrusion Welding As A Joining Method For Vacuum-Assisted Additively Manufactured Tooling, Chase C. Flaherty

Electronic Theses and Dissertations

In recent years, additive manufacturing (AM) has been successfully utilized for the production of large-scale composite tooling. Within these endeavors, however, limited research has focused on joining methods between printed sections. This work evaluates the feasibility of thermoplastic extrusion welding as a joining method for additively manufactured tooling structures. This joining method was assessed based on industry specifications of conventional thermoset tooling for wind blade manufacturing utilizing the vacuum-assisted resin transfer molding (VARTM) process. The specifications include requirements for the mechanical strength, vacuum integrity, roughness, and hardness of the tool surface. The feasibility of this welded polymer joint was demonstrated …


Investigation Into Sintered Lunar Regolith Construction Methods And Novel Usability Evaluation, Thomas A. Cox May 2023

Investigation Into Sintered Lunar Regolith Construction Methods And Novel Usability Evaluation, Thomas A. Cox

Electronic Theses and Dissertations

Since the Apollo missions in the late 1960's, there has been a growing interest shared by many countries around the world to return to the Moon and establish a permanent Lunar settlement. The first phase of temporary Lunar bases will be established over the next several years. For a permanent human presence on the Moon, it will be necessary to use locally available resources for the construction of Lunar habitats and other infrastructure. Sintering Lunar regolith has been shown to be a promising method for producing structural material with a variety of desirable properties from strength to radiation shielding. While …


A Systematic Study Into The Design And Utilization Of Burn Wire As A Means Of Tensioning And Releasing Spacecraft Mechanisms Through Applied Joule Heating, Chandler Dye May 2023

A Systematic Study Into The Design And Utilization Of Burn Wire As A Means Of Tensioning And Releasing Spacecraft Mechanisms Through Applied Joule Heating, Chandler Dye

Mechanical Engineering Undergraduate Honors Theses

The joule heating characteristics of Nichrome burn wires, often used as a thermal cutting device in mechanisms designed to fasten and release CubeSat deployables, are examined in the following thesis. Wires ranging from 0.125 inches to 2 inches long, and diameters of 30 Ga and 40 Ga, are investigated through analytical calculations and thermal simulations based on heat transfer due to joule heating, and through physical circuitry-based experiments. The temperature data is used to generate heating curves to predict the time it takes for Nichrome wires to fail under varying testing parameters. This research aims to catalog a series of …


Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm May 2023

Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm

All Dissertations

Electrically assisted manufacturing (EAM) is the direct application of an electric current to a workpiece during manufacturing. This advanced manufacturing process has been shown to produce anomalous effects which extend beyond the current state of modeling of thermal influences. These purported non-thermal effects have collectively been termed electroplastic effects (EPEs).

While there is a distinct difference in results between steady-state (ideal DC) testing and pulsed current testing, the very definition of these two EAM methods has not been well established. A "long" pulse may be considered DC current; a "short" pulse may produce electroplastic effects; and even "steady-state" current shapes …


Effects Of Tempering Temperature On Gas Turbine Fan Cases, Seth Utter Apr 2023

Effects Of Tempering Temperature On Gas Turbine Fan Cases, Seth Utter

Honors Scholar Theses

The project aimed to investigate the effects of tempering temperature on metals used for gas turbine engine fan cases as a major relevant concern is containing blades in during blade-out events. There are three ways to accomplish this: using a thicker metal, incorporating different materials into the case, or heat treating the metal. This project focused on the third solution: reviewing the impact toughness and hardness of fractured samples and their equivalent ductile-to-brittle transition shear faces. Given its availability, 1045 steel, as opposed to aerospace grade metals, was used for in-house testing. The data obtained from these experiments were then …


Exploring Additive Manufacturing In A Space Environment - A Capstone Design Project Experience, Zain Zafar Khan, Zachary Alan Sobelman, Sharanabasaweshwara Asundi Jan 2023

Exploring Additive Manufacturing In A Space Environment - A Capstone Design Project Experience, Zain Zafar Khan, Zachary Alan Sobelman, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

The employment of additive manufacturing in the non-standard environments like space, ships, or submarines has the potential to be an advanced utility not only in the pre-flight production of aerospace components and structures, but also for the onboard manufacturing of components and tools necessary for future space missions. For example, the ability to produce tools and structural components on the International Space Station can provide the space community the opportunity to make repairs and upgrades to the space station without wasting time and resources transporting such materials through additional missions. Additive manufacturing would allow for space missions to use on …


Noise Reduction Techniques In Commercial Aircraft Cabins, Hashem Hashem Jan 2023

Noise Reduction Techniques In Commercial Aircraft Cabins, Hashem Hashem

Student Works

Main sources of noise heard inside an aircraft cabin:

  • Engines
  • Airframe & control surfaces
  • Window vibrations
  • Passenger announcements & activities.


Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane Jan 2023

Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane

Dissertations, Master's Theses and Master's Reports

Polymer matrix composite materials are widely used as structural materials in aerospace and aeronautical vehicles. Resin/reinforcement wetting and the effect of polymerization on the thermo-mechanical properties of the resin are key parameters in the manufacturing of aerospace composite materials. Determining the contact angle between combinations of liquid resin and reinforcement surfaces is a common method for quantifying wettability. It is challenging to determine contact angle values experimentally of high-performance resins on CNT materials such as CNT, graphene, bundles or yarns, and BNNT surfaces. It is also experimentally difficult to determine the effect of polymerization reaction on material properties of a …


Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad Jan 2023

Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad

Dissertations, Master's Theses and Master's Reports

There is an increase in demand for new lightweight structural materials in the aerospace industry for more efficient and affordable human space travel. Polymer matrix composites (PMCs) with reinforcement material as carbon nanotubes (CNTs) have shown exceptional increase in the mechanical properties. Flattened carbon nanotubes (flCNTs) are a primary component of many carbon nanotube (CNT) yarn and sheet materials, which are promising reinforcements for the next generation of ultra-strong composites for aerospace applications. These flCNT/polymer materials are subjected to extreme pressure and temperature during curing process. Therefore there is a need to investigate the evolution of properties during the curing …


Jcati Carbon Fiber Recycler: Crusher System, Devin Riley Jan 2023

Jcati Carbon Fiber Recycler: Crusher System, Devin Riley

All Undergraduate Projects

With a substantial rise in Carbon Fiber use across all industries, the need for a way to recycle the waste has grown as well. A group of Mechanical Engineering Technology students at Central Washington University funded by the Joint Center for Aerospace Technology (JCATI) have created a machine to recycle waste wing trimmings from the Boeing company’s airplanes. This machine consists of 5 different sub-assemblies being the oven, crusher, gear train, conveyor, and shredder. The purpose of this project was to decrease the deflection in the crusher caused by bulging in the housing and movement of the bearings. To decrease …


Impact Of Spallation And Internal Radiation On Fibrous Ablative Materials, Raghava Sai Chaitanya Davuluri Jan 2023

Impact Of Spallation And Internal Radiation On Fibrous Ablative Materials, Raghava Sai Chaitanya Davuluri

Theses and Dissertations--Mechanical Engineering

Space vehicles are equipped with Thermal Protection Systems (TPS) that encounter high heat rates and protect the payload while entering a planetary atmosphere. For most missions that interest NASA, ablative materials are used as TPS. These materials undergo several mass and energy transfer mechanisms to absorb intense heat. The size and construction of the TPS are based on the composition of the planetary atmosphere and the impact of various ablative mechanisms on the flow field and the material. Therefore, it is essential to quantify the rates of different ablative phenomena to model TPS accurately. In this work, the impact of …