Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Structures and Materials

PDF

2019

Institution
Keyword
Publication
Publication Type

Articles 1 - 15 of 15

Full-Text Articles in Mechanical Engineering

Damage Resistance And Tolerance Of 3d Woven Composites, Justin T. Mcdermott Dec 2019

Damage Resistance And Tolerance Of 3d Woven Composites, Justin T. Mcdermott

Electronic Theses and Dissertations

Composite materials have been adopted into primary aircraft structures by virtue of their great strength-to-weight and stiffness-to-weight ratios, fatigue insensitivity, and corrosion resistance. These characteristics are leveraged by aircraft designers to deliver improved fuel effciency and reduced scheduled maintenance burdens for their customers. These benefits have been impressively realized in the Boeing 787 and Airbus A350 XWB, with airframes utilizing about 50% composites by weight. Tempering these successes, however, are the inherent vulnerabilities of carbon-fiber reinforced composites. When compared to conventional metallic structure, composite laminates are more sensitive to stress concentrations at mechanical fastenings and damage due to low-velocity impact. …


An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins Nov 2019

An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins

LSU Master's Theses

Adhesive repair of carbon fiber composite structures is commonly done on damaged structures to extend the service life. This method requires careful preparation of the damaged surface with intricate steps to ensure good bonding between the repair patch and the parent structure by means of an adhesive film. As with many forms of composite manufacturing, it is required to perform vacuum bagging, debulking, and a heated cure depending on the resin. All these steps make the repair process costly and time consuming.

In this present work, an alternative method of repair is investigated which explores the experimental feasibility of using …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


Redesign Of Cubesat For Beam Charging, Kuba Preis Jun 2019

Redesign Of Cubesat For Beam Charging, Kuba Preis

Industrial and Manufacturing Engineering

This paper is intended to be a study in the applications of the design freedom granted by additive manufacture in the design of a 1U CubeSat frame. The main loads experienced by a CubeSat are structural (during launch) and thermal (solar radiation). Beam charging is an emerging technology which involves charging a CubeSat using a laser beam. In this paper, a CubeSat frame was redesigned to account for the structural loads induced during launch and the thermal loads induced when beam charging. The thermal, weight, design, and structural requirements for a new CubeSat design were derived. The 1U CubeSat frame …


Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator Jun 2019

Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator

Materials Engineering

PCC Structurals, an industry leader in superalloy investment castings, has observed inconsistencies in the stress rupture performance of polycrystalline nickel-based superalloy PWA 1455. PCC has changed their casting parameters to reduce the thermal gradient during cooling but have been unable to correlate these changes with an increase in stress rupture elongation. Metallographic examination of past samples indicated microstructures composed of non- equiaxed dendritic grains with mean diameter of .021 inches along the test axis. A similar study on polycrystalline superalloys has indicated that excessive superheat temperatures above the liquidus can result in large grains identical to those observed, limiting the …


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


Development Of A Multi-Probe Kelvin Scanner Device For Industrially-Relevant Characterization Of Surface-Activated Carbon Fiber Reinforced Thermoplastic Composites, Kirby Simon May 2019

Development Of A Multi-Probe Kelvin Scanner Device For Industrially-Relevant Characterization Of Surface-Activated Carbon Fiber Reinforced Thermoplastic Composites, Kirby Simon

McKelvey School of Engineering Theses & Dissertations

Carbon fiber reinforced thermoplastic (CFRTP) composites are becoming increasingly attractive materials in manufacturing due to their lightweight nature, mechanical strength, and corrosion resistance. Surface activation of these materials is usually required during processing to increase the bond strength of assemblies (aerospace and automotive industries) or improve adhesion with implants (biomedical industry). Industrially-relevant, nondestructive quality control methods for assessing the activation state of these materials do not currently exist, however. Applying principles discovered through the use of scanning probe microscopy, a multiple-probe Kelvin scanning (MPKS) device has been developed that can assess the uniformity of the activation state of plasma-treated CFRTP …


A Constructal Approach To The Design Of Inflected Airplane Wings, Shanae Powell Mar 2019

A Constructal Approach To The Design Of Inflected Airplane Wings, Shanae Powell

FIU Electronic Theses and Dissertations

Aeroelastic instabilities such as flutter can be accurately captured by state-of-the-art aeroelastic analysis methods and tools. However, these tools and methods fall short in exposing the reasons behind the occurrence of such instabilities. In this research, the constructal law is used to discover the main cause of the variation in the flutter speed and stress distribution for inflected aircraft wings when compared to its uninflected counterpart. This law considers the design as a physics phenomenon and uses an evolutionary flow principle to explain and predict the occurrence of energy flow configurations (i.e. the flow of stresses throughout the structure).

For …


Improving The Delivered Specific Impulse Of Composite Rocket Propellant Through Alteration Of Chemical Composition: Methodology And Parameters For Characterization Of Propellant And Validation Of Simulation Software Common To The Amateur Rocketry Community, Isaac O'Brien, Austin Ryan Jan 2019

Improving The Delivered Specific Impulse Of Composite Rocket Propellant Through Alteration Of Chemical Composition: Methodology And Parameters For Characterization Of Propellant And Validation Of Simulation Software Common To The Amateur Rocketry Community, Isaac O'Brien, Austin Ryan

Williams Honors College, Honors Research Projects

In this study, two solid composite rocket propellants were designed utilizing ProPEP, a rocket propellant formulation software common in the amateur and hobby rocketry communities. The two propellants were designed to optimize specific impulse relative to a literature propellant designed by 1020 Research Labs. The literature propellant was also tested in order to validate the design of experiment as well as the mixing and testing procedures. All three propellants, which includes the literature propellant RCS-P, and the two novel propellants AKR-P1 and AKR-P2 were characterized with static tests. The results of the static tests provide data on propellant performance and …


Composite Recycler: Delamination, Nathan Sauer Jan 2019

Composite Recycler: Delamination, Nathan Sauer

All Undergraduate Projects

A great deal of composite waste is generated in the construction of wings for the Boeing 777. These carbon fiber “wing trimmings” are currently being disposed of in a landfill. These carbon fiber boards are made of several layers laminated together, making them very rigid and hard to recycle. This report proposes a method to delaminate the layers of these composite wing trimmings using a hydraulic press and a V-shaped steel die so that they may be more easily shredded and thus recycled. A top, “male” die with two points is pressed into a bottom, “female” die with three points …


Landing-Gear Impact Response: A Non-Linear Finite Element Approach, Tuan H. Tran Jan 2019

Landing-Gear Impact Response: A Non-Linear Finite Element Approach, Tuan H. Tran

UNF Graduate Theses and Dissertations

The primary objective of this research is to formulate a methodology of assessing the maximum impact loading condition that will incur onto an aircraft’s landing gear system via Finite Element Analysis (FEA) and appropriately determining its corresponding structural and impact responses to minimize potential design failures during hard landing (abnormal impact) and shock absorption testing. Both static and dynamic loading condition were closely analyzed, compared, and derived through the Federal Aviation Administration’s (FAA) airworthiness regulations and empirical testing data.

In this research, a nonlinear transient dynamic analysis is developed and established via NASTRAN advanced nonlinear finite element model (FEM) to …


Enhanced Surface Integrity With Thermally Stable Residual Stress Fields And Nanostructures In Cryogenic Processing Of Titanium Alloy Ti-6al-4v, James R. Caudill Jan 2019

Enhanced Surface Integrity With Thermally Stable Residual Stress Fields And Nanostructures In Cryogenic Processing Of Titanium Alloy Ti-6al-4v, James R. Caudill

Theses and Dissertations--Mechanical Engineering

Burnishing is a chipless finishing process used to improve surface integrity by severe plastic deformation (SPD) of surface asperities. As surface integrity in large measure defines the functional performance and fatigue life of aerospace alloys, burnishing is thus a means of increasing the fatigue life of critical components, such as turbine and compressor blades in gas turbine engines. Therefore, the primary objective of this dissertation is to characterize the burnishing-induced surface integrity of Ti-6Al-4V alloy in terms of the implemented processing parameters. As the impact of cooling mechanisms on surface integrity from SPD processing is largely unexplored, a particular emphasis …


3d Textile Preforms And Composites For Aircraft Strcutures: A Review, Abbasali Saboktakin Jan 2019

3d Textile Preforms And Composites For Aircraft Strcutures: A Review, Abbasali Saboktakin

International Journal of Aviation, Aeronautics, and Aerospace

Over the last decades, the development of 3D textile composites has been driven the structures developed to overcome disadvantages of 2D laminates such as the needs of reducing fabrication cost, increasing through-thickness mechanical properties, and improving impact damage tolerance. 3D woven, stitched, knitted and braided preforms have been used as composites reinforcement for these types of composites. In this paper, advantages and disadvantages of each of them have been comprehensively discussed. The fabric architects and their specification in particular stitched preforms and their deformation mode for aerospace applications have been reviewed. Exact insight into various types of damage in textile …


Interlaminar Damage Detection In Composite Materials, Hariharan Rangarajan Jan 2019

Interlaminar Damage Detection In Composite Materials, Hariharan Rangarajan

Williams Honors College, Honors Research Projects

Using ceramic matrix composites (CMCs) for high-temperature applications in jet engines increases durability and reduces weight and cooling requirements resulting in improved efficiency and fuel savings. Understanding, detecting, and monitoring different types of damage is essential to achieve optimal performance of CMC components. The Direct Current Potential Drop (DCPD) method is a non-destructive technique of estimating damage in composite materials.

DCPD technique works by measuring nodal potential differences when current is flown through the material. Direct current spreading in different woven and laminate composites is modeled to follow a ladder resistor network in which the nodal voltages decrease exponentially as …


Bayesian Model Averaging Based Storage Lifetime Assessment Method For Rubber Sealing Rings, Di Liu, Shaoping Wang, Chao Zhang, Mileta M. Tomovic Jan 2019

Bayesian Model Averaging Based Storage Lifetime Assessment Method For Rubber Sealing Rings, Di Liu, Shaoping Wang, Chao Zhang, Mileta M. Tomovic

Engineering Technology Faculty Publications

Rubber sealing ring is one of the most widely used seals. It is always stored for a period of time before put into use, especially in aeronautic and aerospace applications. It is necessary to evaluate the storage lifetime of rubber sealing rings. However, due to the long storage lifetime of rubber sealing rings, two issues need to be handled, including model uncertainty and lack of storage lifetime data. A Bayesian model averaging based storage lifetime assessment method for rubber sealing rings is proposed in this article. The Gamma distribution model and Weibull distribution model are selected as the candidate models …