Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

The Bending Strip Method For Isogeometric Analysis Of Kirchhoff–Love Shell Structures Comprised Of Multiple Patches, J. Kiendel, Y. Bazilevs, Ming-Chen Hsu, R. Wuchner, K. U. Bletzigner Aug 2010

The Bending Strip Method For Isogeometric Analysis Of Kirchhoff–Love Shell Structures Comprised Of Multiple Patches, J. Kiendel, Y. Bazilevs, Ming-Chen Hsu, R. Wuchner, K. U. Bletzigner

Ming-Chen Hsu

In this paper we present an isogeometric formulation for rotation-free thin shell analysis of structures comprised of multiple patches. The structural patches are C1- or higher-order continuous in the interior, and are joined with C0-continuity. The Kirchhoff–Love shell theory that relies on higher-order continuity of the basis functions is employed in the patch interior as presented in Kiendl et al. [36]. For the treatment of patch boundaries, a method is developed in which strips of fictitious material with unidirectional bending stiffness and zero membrane stiffness are added at patch interfaces. The direction of bending stiffness is chosen to be transverse …


Ground Support Equipment For Northrop Grumman Massive Heat Transfer Experiment, Michael A. Manuel, Christopher J. Sparber, Greg A. Trent Jun 2010

Ground Support Equipment For Northrop Grumman Massive Heat Transfer Experiment, Michael A. Manuel, Christopher J. Sparber, Greg A. Trent

Aerospace Engineering

California Polytechnic State University students designed, built, and certified ground support equipment for the Northrop Grumman Massive Heat Transfer Experiment. The Cal Poly design team built the 10000, 20000, and 30000 assemblies to meet Northrop Grumman requirements. The requirements included interface limitations, design load factors, delivery, and testing specifications. The design process consists of requirements generation, conceptual design, preliminary design, design reviews, manufacturing, and certification. The hardware was successfully completed and is used at the Johnson Space and Kennedy Space Center.


Modeling Disk Cracks In Rotors By Utilizing Speed Dependent Eccentricity, Andrew L. Gyekenyesi, Jerzy T. Sawicki, Wayne C. Haase Mar 2010

Modeling Disk Cracks In Rotors By Utilizing Speed Dependent Eccentricity, Andrew L. Gyekenyesi, Jerzy T. Sawicki, Wayne C. Haase

Mechanical Engineering Faculty Publications

This paper discusses the feasibility of vibration-based structural health monitoring for detecting disk cracks in rotor systems. The approach of interest assumes that a crack located on a rotating disk causes a minute change in the system’s center of mass due to the centrifugal force induced opening of the crack. The center of mass shift is expected to reveal itself in the vibration vector (i.e., whirl response; plotted as amplitude and phase versus speed) gathered during a spin-up and/or spin-down test. Here, analysis is accomplished by modeling a Jeffcott rotor that is characterized by analytical, numerical, and experimental data. The …


Improving Stability Of Stabilized And Multiscale Formulations In Flow Simulations At Small Time Steps, Ming-Chen Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, T.J.R. Hughes Feb 2010

Improving Stability Of Stabilized And Multiscale Formulations In Flow Simulations At Small Time Steps, Ming-Chen Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, T.J.R. Hughes

Ming-Chen Hsu

The objective of this paper is to show that use of the element-vector-based definition of stabilization parameters, introduced in [T.E. Tezduyar, Computation of moving boundaries and interfaces and stabilization parameters, Int. J. Numer. Methods Fluids 43 (2003) 555–575; T.E. Tezduyar, Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg. 190 (2000) 411–430], circumvents the well-known instability associated with conventional stabilized formulations at small time steps. We describe formulations for linear advection–diffusion and incompressible Navier–Stokes equations and test them on three benchmark problems: advection of an L-shaped discontinuity, laminar flow in a square …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jan 2010

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …