Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Structural Sizing Of Post-Buckled Thermally Stressed Stiffened Panels, Walid Arsalane May 2022

Structural Sizing Of Post-Buckled Thermally Stressed Stiffened Panels, Walid Arsalane

Theses and Dissertations

Design of thermoelastic structures can be highly counterintuitive due to design-dependent loading and impact of geometric nonlinearity on the structural response. Thermal loading generates in-plane stresses in a restrained panel, but the presence of geometric nonlinearity creates an extension-bending coupling that results in considerable transverse displacement and variation in stiffness characteristics, and these affects are enhanced in post-bucking regimes. Herein a methodology for structural sizing of thermally stressed post-buckled stiffened panels is proposed and applied for optimization of the blade and hat stiffeners using a gradient-based optimizer. The stiffened panels are subjected to uniform thermal loading and optimized for minimum …


Effects Of A Nitrogen And Hydrogen Build Atmosphere On The Properties Of Additively Manufactured Tungsten, Dana C. Madsen Mar 2022

Effects Of A Nitrogen And Hydrogen Build Atmosphere On The Properties Of Additively Manufactured Tungsten, Dana C. Madsen

Theses and Dissertations

Additively manufactured tungsten was printed in pure nitrogen, nitrogen-2.5% hydrogen, and nitrogen-5% hydrogen atmospheres as part of a 2^3 full factorial designed experiment and subjected to room temperature and high-temperature three-point-bend testing, chemical analysis, hardness testing, and microstructural imaging techniques. The pure nitrogen specimens exhibited the highest strength and ductility at both high temperature and room temperature. Chemical analysis showed a 2-8x reduction in compositional oxygen relative to unprocessed powder. Hardness values for all samples was between 306.8 and 361.5 HV1. It is proposed that adding hydrogen into the build atmosphere reduced the available energy density for tungsten melting by …


Investigation Of Additively Manufactured Molybdenum-Tungsten-Rhenium Alloys, Randolph T. Abaya Mar 2022

Investigation Of Additively Manufactured Molybdenum-Tungsten-Rhenium Alloys, Randolph T. Abaya

Theses and Dissertations

The process of creating metal components through additive manufacturing is changing the way different industries can avoid the shortcomings of traditional metal production. Metals such as tungsten, molybdenum, and rhenium have many advantages for different applications, especially when alloyed together. In this study, an additively manufactured alloy containing 70% molybdenum, 25% tungsten, and 5% rhenium (70Mo-25W-5Re) is tested for its strength, ductility, hardness, and porosity. The 70Mo-25W-5Re alloy is printed through Laser Powder Bed Fusion (LPBF) under different conditions such as printing speed and printing atmosphere. Additionally, the effects of post printing heat treatment are conducted to understand the advantages …


Fluid-Structure Interaction Of Nrel 5-Mw Wind Turbine, Mohamed Sayed Elkady Abd-Elhay Jun 2021

Fluid-Structure Interaction Of Nrel 5-Mw Wind Turbine, Mohamed Sayed Elkady Abd-Elhay

Theses and Dissertations

Wind energy is considered one of the major sources of renewable energy. Nowadays, wind turbine blades could exceed 100 m to maximize the generated power and minimize produced energy cost. Due to the enormous size of the wind turbines, the blades are subjected to failure by aerodynamics loads or instability issues. Also, the gravitational and centrifugal loads affect the wind turbine design because of the huge mass of the blades. Accordingly, wind turbine simulation became efficient in blade design to reduce the cost of its manufacturing. The fluid-structure interaction (FSI) is considered an effective way to study the turbine's behavior …


Peridynamic Approaches For Damage Prediction In Carbon Fiber And Carbon Nanotube Yarn Reinforced Polymer Composites, Forrest E. Baber Jan 2020

Peridynamic Approaches For Damage Prediction In Carbon Fiber And Carbon Nanotube Yarn Reinforced Polymer Composites, Forrest E. Baber

Theses and Dissertations

Aerospace structures are increasingly utilizing advanced composites because of their high specific modulus and specific strength. While the introduction of these material systems can dramatically decrease weight, they pose unique certification challenges, often requiring extensive experimental testing in each stage of the design cycle. The expensive and time-consuming nature of experimental testing necessitates the advancement of simulation methodologies to both aid in the certification process and assist in the exploration of the microstructure design space.

Peridynamic (PD) theory, originating from Sandia National Lab’s in the early 2000’s, is a nonlocal continuum-based method that reformulates the equation of motion into an …


Evaluating The Effectiveness Of Aerospace Materials, Vehicle Shape And Astronaut Position At Lowering The Whole Body Effective Dose Equivalent In Deep Space, Daniel K. Bond Jan 2020

Evaluating The Effectiveness Of Aerospace Materials, Vehicle Shape And Astronaut Position At Lowering The Whole Body Effective Dose Equivalent In Deep Space, Daniel K. Bond

Theses and Dissertations

As future crewed, deep space missions are being planned, it is important to assess how spacecraft design can be used to minimize radiation exposure. Collectively with shielding material, vehicle shape and astronaut position must be used to protect astronauts from the two primary sources of space radiation: Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE). GCRs, which are composed of low intensity, highly energetic, and fully ionized stable and meta-stable isotopes, are considered a chronic source of radiation risk to the astronauts. SPEs, which originate from solar coronal mass ejections, are composed mostly of high intensity protons that can …


Investigation Into Contact Resistance And Damage Of Metal Contacts Used In Rf-Mems Switches, Kevin W. Gilbert Dec 2009

Investigation Into Contact Resistance And Damage Of Metal Contacts Used In Rf-Mems Switches, Kevin W. Gilbert

Theses and Dissertations

This research examines the physical and electrical processes involved in lifecycle failure of Microelectromechanical (MEMS) Radio-Frequency (RF) cantilever beam ohmic contact switches. Failures of these switches generally occur at the contact, but complete details of performance of microcontacts are difficult to measure and have not been previously reported. This study investigated the mechanics of microcontact behavior by designing and constructing a novel experimental setup. Three representative contact materials of varying microstructure (Au, Au5%Ru, Au4%V2O5) were tested and parameters of contact during cycling were measured. The Au4%V2O5, a dispersion strengthened material developed at …


Electro-Mechanical Fatigue Behavior Of A Quasi-Isotropic Laminate With An Embedded Piezoelectric Actuator, Tse Lin Hsu Sep 1998

Electro-Mechanical Fatigue Behavior Of A Quasi-Isotropic Laminate With An Embedded Piezoelectric Actuator, Tse Lin Hsu

Theses and Dissertations

This study primarily investigated the electro-mechanical fatigue behavior of the embedded piezoelectric actuators in graphite/epoxy laminate with a lay-up of 0 | ± 45 | 90s. A secondary focus was the investigation of the mechanical fatigue effects of the 0 | 0 | ± 45 | 0 | 0 | 90s laminate with embedded PZT under tensile loading. All the fatigue tests were conducted with a triangular loading waveform which had a frequency of 10 Hz and with R=0. 1. In the electro-mechanical testing, the embedded actuator was excited by a -10 V to -100 V or a 10 V …


Solution To Eigenvalue Problems Of Antisymmetric Cross-Ply And Antisymmetric Angle-Ply Laminated Plates Using Affine Transformations, Zaffir A. Chaudry Dec 1984

Solution To Eigenvalue Problems Of Antisymmetric Cross-Ply And Antisymmetric Angle-Ply Laminated Plates Using Affine Transformations, Zaffir A. Chaudry

Theses and Dissertations

Using affine transformations and suitably recasting the buckling vibration differential equations, the eigenvalue problem of anti-symmetric cross-ply and antisymmetric angle-ply laminated rectangular plates has been reduced to a function of two strong material constants, the generalized rigidity ratio, whose range is in the closed interval from 0 to 1, and the ratio of principal lamina stiffness. With the reduction in number of constants an exhaustive parameter study of buckling and vibration solution trends, is possible. The buckling coefficients decrease with decreasing value of generalized rigidity ratio for both antisymmetric cross-ply and antisymmetric angle-ply laminates. For a given aspect ratio, and …