Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials

Air Force Institute of Technology

Theses and Dissertations

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Characterization Of Stress In Gan-On-Sapphire Microelectromechanical Systems (Mems) Structures Using Micro-Raman Spectroscopy, Francisco E. Parada Mar 2006

Characterization Of Stress In Gan-On-Sapphire Microelectromechanical Systems (Mems) Structures Using Micro-Raman Spectroscopy, Francisco E. Parada

Theses and Dissertations

Micro-Raman (µRaman) spectroscopy is an efficient, non-destructive technique widely used to determine the quality of semiconductor materials and microelectromechanical systems. This work characterizes the stress distribution in wurtzite gallium nitride grown on c-plane sapphire substrates by molecular beam epitaxy. This wide bandgap semiconductor material is being considered by the Air Force Research Laboratory for the fabrication of shock-hardened MEMS accelerometers. µRaman spectroscopy is particularly useful for stress characterization because of its ability to measure the spectral shifts in Raman peaks in a material, and correlate those shifts to stress and strain. The spectral peak shift as a function of stress, …


Detection Of Residual Stress In Sic Mems Using Μ-Raman Spectroscopy, John C. Zingarelli Mar 2005

Detection Of Residual Stress In Sic Mems Using Μ-Raman Spectroscopy, John C. Zingarelli

Theses and Dissertations

Micro-Raman (µ-Raman) spectroscopy is used to measure residual stress in two silicon carbide (SiC) poly-types: single-crystal, hexagonally symmetric 6H-SiC, and polycrystalline, cubic 3C-SiC thin films deposited on Si substrates. Both are used in micro-electrical-mechanical systems (MEMS) devices. By employing an incorporated piezoelectric stage with submicron positioning capabilities along with the Raman spectral acquisition, spatial scans are performed to reveal areas in the 6H-SiC MEMS structures that contain residual stress. Shifts in the transverse optical (TO) Stokes peaks of up to 2 cm-1 are correlated to the material strain induced by the MEMS fabrication process through the development of phonon …