Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran Dec 2023

Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran

Theses and Dissertations

A novel parallelizable probabilistic approach to model eddy currents in AC electromagnets is presented in this research. Consequently, power loss associated with the formation of these eddy currents is estimated and validated using experimental data. Furthermore, predicting the effect of ferromagnetic alternating field enhancement on power loss in the source excitation winding has been an active area of research. Unlike a stationary field, an alternating sinusoidal field diffuses partially into the ferromagnetic material leading to a predictably sub-optimal field enhancement. To model these physics, finite element techniques employ nonlinear iterative solvers which are time consuming. A novel method is developed …


Torque Vectoring To Maximize Straight-Line Efficiency In An All-Electric Vehicle With Independent Rear Motor Control, William Blake Brown Dec 2021

Torque Vectoring To Maximize Straight-Line Efficiency In An All-Electric Vehicle With Independent Rear Motor Control, William Blake Brown

Theses and Dissertations

BEVs are a critical pathway towards achieving energy independence and meeting greenhouse and pollutant gas reduction goals in the current and future transportation sector [1]. Automotive manufacturers are increasingly investing in the refinement of electric vehicles as they are becoming an increasingly popular response to the global need for reduced transportation emissions. Therefore, there is a desire to extract the most fuel economy from a vehicle as possible. Some areas that manufacturers spend much effort on include minimizing the vehicle’s mass, body drag coefficient, and drag within the powertrain. When these values are defined or unchangeable, interest is driven to …


Effect Of Deposition Conditions On Properties Of Molybdenum Back Electrode For Cu(In,Ga)Se2 Solar Cell And Cu(In,Ga)Se2 Performance Analysis Through Numerical Simulation, Meah Imtiaz Zulkarnain Aug 2021

Effect Of Deposition Conditions On Properties Of Molybdenum Back Electrode For Cu(In,Ga)Se2 Solar Cell And Cu(In,Ga)Se2 Performance Analysis Through Numerical Simulation, Meah Imtiaz Zulkarnain

Theses and Dissertations

In the first part of this research, the effect of the deposition conditions on properties of molybdenum thin-film were investigated to achieve desired characteristics for its application as the back electrode of Cu(In,Ga)Se2 solar cell. DC and RF magnetron sputtering modes were employed and two sputtering parameters namely, working pressure and sputtering power, were varied to determine the sputtering mode and the sputtering conditions best suited for Mo thin-films having required properties. Sputtered Mo samples were characterized to determine their structural and mechanical properties such as preferred growth orientation, crystallinity, grain size, dislocation density, adhesion, and micro strain, and electrical …


Perovskite Solar Cells Fabricated Via Scalable Dip Coating Methods, Joseph F. Iannello May 2018

Perovskite Solar Cells Fabricated Via Scalable Dip Coating Methods, Joseph F. Iannello

Theses and Dissertations

Perovskite solar cells present the possibility for less expensive electricity generation, through the use of low cost materials and fabrication methods relative to current silicon-based technology. Many current methods of fabricating thin film perovskite solar cells focus on spin-coating, which inherently lacks scalability due to particle conglomeration, poor uniformity over a larger area, and safety concerns. Dip-coating, an alternative to spin-coating, which is explored here addresses these issues which limit scalability. Each individual layer can be separately synthesized, deposited, and characterized, which leads towards scalability. Choosing only the best results from each independent layer allowed progress to the creation of …