Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

2018

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 34

Full-Text Articles in Mechanical Engineering

Optical Micro-Seismometer Based On Evanescent Field Perturbation Of Whispering Gallery Modes, Jaime Da Silva Dec 2018

Optical Micro-Seismometer Based On Evanescent Field Perturbation Of Whispering Gallery Modes, Jaime Da Silva

Mechanical Engineering Research Theses and Dissertations

This thesis proposes a light-weight, compact, and accurate optical micro-seismometer that could be used in many applications, such as planetary exploration. The sensor proposed here is based on the principle of whispering gallery optical mode (WGM) resonance shifts of a dielectric micro-resonator due to disturbances of its evanescent field. The micro-seismometer could be used in place of the traditional bulky seismometers. The design of a waveguide-resonator and mechanical structure to disturb the evanescent field are presented. A proof-of-concept a seismometer model that uses a 5µm ring resonator is numerically tested with actual seismic data. The results show that a WGM-based …


First Observation Of P-Odd Gamma Asymmetry In Polarized Neutron Capture On Hydrogen, D. Blyth, J. Fry, N. Fomin, R. Alarcon, L. Alonzi, E. Askanazi, S. Baeßler, S. Balascuta, L. Barrón-Palos, Alex Barzilov, J. D. Bowman, N. Birge, J. R. Calarco, T. E. Chupp, V. Cianciolo, C. E. Coppola, C. B. Crawford, K. Craycraft, D. Evans, C. Fieseler, E. Frlež, I. Garishvili, M. T. W. Gericke, R. C. Gillis, K. B. Grammer, G. L. Greene, J. Hall, J. Hamblen, C. Hayes, E. B. Iverson, M. L. Kabir Dec 2018

First Observation Of P-Odd Gamma Asymmetry In Polarized Neutron Capture On Hydrogen, D. Blyth, J. Fry, N. Fomin, R. Alarcon, L. Alonzi, E. Askanazi, S. Baeßler, S. Balascuta, L. Barrón-Palos, Alex Barzilov, J. D. Bowman, N. Birge, J. R. Calarco, T. E. Chupp, V. Cianciolo, C. E. Coppola, C. B. Crawford, K. Craycraft, D. Evans, C. Fieseler, E. Frlež, I. Garishvili, M. T. W. Gericke, R. C. Gillis, K. B. Grammer, G. L. Greene, J. Hall, J. Hamblen, C. Hayes, E. B. Iverson, M. L. Kabir

Mechanical Engineering Faculty Research

We report the first observation of the parity-violating gamma-ray asymmetry A(gamma)(np) in neutron-proton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. A(gamma)(np) isolates the Delta I = 1, S-3(1)-> P-3(1) component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless effective field theory… See full text for full abstract.


Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole Oct 2018

Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole

Masters Theses

This thesis presents the development towards a system that can capture and quantify motion for applications in biomechanical and medical fields demanding precision motion tracking using the lighthouse technology. Commercially known as SteamVR tracking, the lighthouse technology is a motion tracking system developed for virtual reality applications that makes use of patterned infrared light sources to highlight trackers (objects embedded with photodiodes) to obtain their pose or spatial position and orientation. Current motion capture systems such as the camera-based motion capture are expensive and not readily available outside of research labs. This thesis provides a case for low-cost motion capture …


Fluted Films, Nathan B. Spiers, Mohammad M. Mansoor, Jesse Belden, Randy Craig Hurd, Zhao Pan, Tadd T. Truscott Oct 2018

Fluted Films, Nathan B. Spiers, Mohammad M. Mansoor, Jesse Belden, Randy Craig Hurd, Zhao Pan, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

This paper is associated with a poster winner of a 2017 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2017.GFM.P0030


Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren Oct 2018

Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren

Mechanical & Aerospace Engineering Faculty Publications

Modeling works which simulate the proton-exchange membrane fuel cell with the computational fluid dynamics approach involve the simultaneous solution of multiple, interconnected physics equations for fluid flows, heat transport, electrochemical reactions, and both protonic and electronic conduction. Modeling efforts vary by how they treat the physics within and adjacent to the membrane-electrode assembly (MEA). Certain approaches treat the MEA not as part of the computational domain, but rather an interface connecting the anode and cathode computational domains. These approaches may lack the ability to consistently model catalyst layer losses and MEA ohmic resistance. This work presents an upgraded interface formulation …


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed …


Streamwise Flow-Induced Oscillations Of Bluff Bodies - The Influence Of Symmetry Breaking, Tyler Gurian Jul 2018

Streamwise Flow-Induced Oscillations Of Bluff Bodies - The Influence Of Symmetry Breaking, Tyler Gurian

Masters Theses

The influence of symmetry breaking on the flow induced oscillations of bluff bodies in the steamwise direction is studied. First, a series of experiments is conducted on a one-degree-of-freedom circular cylinder allowed to exhibit pure translational motion in the streamwise direction over a range of reduced velocities, 1.4 < U* < 4.4, corresponding to a Reynolds number range of 970 < Re < 3370. Two distinct regions of displacements were observed in reduced velocity ranges of 1.6 < U* < 2.5 and 2.75 < U* < 3.85. Measured force coefficients in the drag and lift direction were examined, along with the wake visualization, through the range of reduced velocities, to infer the resulting wake modes. A new Alternating Symmetric (AS) mode was found. This transition from symmetric to AS shedding occurred near the end of the first region of response. Similar tests were run with a square prism in the parameter space of 2.4 < U* < 5.8 and 757 < Re < 1900 over angles of incidence of 0° ≤ α ≤ 45°. A distinct region of lock-in is observed for α = 0°, 2.5°, 5°, 7.5° over 3.2 < U* < 5.4 for α = 0°, and decreasing with increasing α. The wake structures were found to be roughly symmetric for α = 0°, but transitioned towards asymmetry …


Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks Jun 2018

Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks

The International Student Science Fair 2018

We have innovated “The Energy Conversion System for Travelers” or the ECoST. With the fact that most travelers have wheeled cabin-bags, whilst walking, the wheels will rotate so why don’t we harvest electricity from this kinetic energy? We thus install our innovation, the ECoST, to the bag to generate electricity from the spinning wheels. The electricity is then kept in the storage unit and ready to charge your empty battery devices in an emergency case via a USB port. To make life easy, our ECoST was designed to replicate the power bank charging method; therefore, we can charge …


Wind Energy And Wind-Energy-Inspired Turbulent Wakes: Modulation Of Structures, Mechanisms And Flow Regimes, Elizabeth H. Camp Jun 2018

Wind Energy And Wind-Energy-Inspired Turbulent Wakes: Modulation Of Structures, Mechanisms And Flow Regimes, Elizabeth H. Camp

Dissertations and Theses

The interaction of turbulent wakes with one another and with the adjacent fluid directly impacts the generation of electricity in wind turbine arrays. Computational modeling is well suited to the repeated iterations of data generation that may be required to inform understanding of the function of wind farms as well as to develop control schemes for plant function. In order to perform such computational studies, a simplified model of the turbine must be implemented. One of the most computationally efficient parametrizations of the blade utilizes a stationary disk which has a prescribed drag and produces a wake. However, since accurate …


A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise May 2018

A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise

Mechanical Engineering Research Theses and Dissertations

In this thesis, a laser velocity sensor concept based on optical microresonators is presented and the application to spacecraft atmospheric entry is explored. The concept is based on the measurement of Doppler shift of back-scattered laser light. Specifically, the Doppler shift is detected by observing the whispering gallery optical modes (WGM) of a dielectric microresonator excited by the back scattered light from particulates and gas molecules. The microresonator replaces the typical Fabry-Perot interferometer and CCD camera system, thereby significantly reducing the size and weight of the overall detection system. This thesis presents proof-of-concept results for this measurement approach. The Doppler …


Risk Assessment Of Dropped Cylindrical Objects In Offshore Operations, Adelina Steven May 2018

Risk Assessment Of Dropped Cylindrical Objects In Offshore Operations, Adelina Steven

University of New Orleans Theses and Dissertations

Dropped object are defined as any object that fall under its own weight from a previously static position or fell due to an applied force from equipment or a moving object. It is among the top ten causes of injuries and fatality in oil and gas industry. To solve this problem, several in-house tools and guidelines is developed over time to assess the risk of dropped objects on the sub-sea structures. This thesis focuses on compiling and comparing those methods in hope to improve the recommended practices available in the market. A simple modification is done on the in-house tools …


Design & Delivery Of Automated Winston-Lutz Test For Isocentric & Off-Axis Delivery Stability Utilizing Truebeam Developer Mode & Electronic Portal Imaging Device, Mahmoud Mohammad Yaqoub May 2018

Design & Delivery Of Automated Winston-Lutz Test For Isocentric & Off-Axis Delivery Stability Utilizing Truebeam Developer Mode & Electronic Portal Imaging Device, Mahmoud Mohammad Yaqoub

UNLV Theses, Dissertations, Professional Papers, and Capstones

The uncertainties in treatment delivery cannot be ignored in radiation therapy. Thus, the quality assurance QA tests are very important task of the medical physicist in clinical practice. Assuring the coincidence between the mechanical isocenter of the Linear Accelerator (LINAC) and its radiation beams isocenter is one of the most important qualities need to be tested, and the Winston Lust (WL) test is the

most popular technique to perform this task, especially for the treatment modalities which need high precision in beam delivery such as the stereotactic radiosurgery/stereotactic body radiotherapy (SRS/SBRT). The linear accelerator-based SRS/SBRT is a well-established method in …


Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay May 2018

Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay

Electronic Theses and Dissertations

High-temperature, harsh-environment static and dynamic strain sensors are needed for industrial process monitoring and control, fault detection, structural health monitoring in power plant environments, steel and refractory material manufacturing, aerospace, and defense applications. Sensor operation in the aforementioned extreme environments require robust devices capable of sustaining the targeted high temperatures, while maintaining a stable sensor response. Current technologies face challenges regarding device or system size, complexity, operational temperature, or stability.

Surface acoustic wave (SAW) sensor technology using high temperature capable piezoelectric substrates and thin film technology has favorable properties such as robustness; miniature size; capability of mass production; reduced installation …


A Human Powered Micro-Generator For Charging Electronic Devices, John Adam May 2018

A Human Powered Micro-Generator For Charging Electronic Devices, John Adam

Senior Theses

A hand-pulled generator has been designed and tested. A preliminary result has been obtained and discussed. This device was created to provide outlet-free charging. Electronic devices are useful when going out into the wilderness. A portable power supply is necessary to keep an electronic device alive. This project created a device that converts human energy into electricity to charge electronic devices. This thesis overviews the device’s design, build, and tests. Two different tests were run to determine that the device is capable of charging the storage battery. The device presented can provide 14 minutes of charging time with one hour …


Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett May 2018

Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett

Senior Theses

This project tests and explores resonance of strings. Since all materials and mechanisms are affected by vibrations, it is important to know the frequencies at which resonance occurs. To explore this subject, strings were used as a model material to test the effect tension has on resonance. The fundamental frequencies and the corresponding modes of resonance were used to analyze the data. The results of this experiment show that increasing tension on a string increases its resonance frequency. Understanding the physics behind resonance frequency allows systems to be designed to take advantage of resonance properties, or to avoid resonance where …


The Effects Of Surface Pace In Baseball, Jason Farlow May 2018

The Effects Of Surface Pace In Baseball, Jason Farlow

Senior Theses

A baseball travels across different surfaces at different paces. The goal of this experiment is to find a percentage difference in speeds the ball will reflect off a given surface. The energy lost on the turf surface was far more significant than on dirt surface as the turf lost an average of 26% of its energy as compared to just 16% of the energy on dirt. In the Northwest conference, teams play on four turf-based infields and five dirt-based infields. The results of this study suggest that kinetic friction forces are more significant in reducing ball rebound speed than in …


Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri May 2018

Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri

Senior Theses

When operating graphene field effect transistors (GFETs) in fluid, a double layer capacitance (Cdl) is formed at the surface. In the literature, the Cdl is estimated using values obtained using metal electrode experiments. Due to the distinctive electronic and surface properties of graphene, there is reason to believe these estimates are inadequate. This work seeks to directly characterize the double layer capacitance of a GFET. A unique method for determining the Cdl has been implemented, and data has been obtained for three electrolytes and one ionic fluid. The results yield dramatically lower Cdl values than …


On The Reduction Of The Driving Force In Shear-Driven Flows, Sakib Shadman Apr 2018

On The Reduction Of The Driving Force In Shear-Driven Flows, Sakib Shadman

Electronic Thesis and Dissertation Repository

In shear-driven flows, an external driving force is needed to maintain the relative movement of horizontal plates. This thesis presents a systematic analysis on using spatially periodic heating and grooved surfaces to control this force. It is found that the use of periodic heating creates a buoyancy-driven effect that always reduces this force. The use of proper heating may even lead to the complete elimination of this force. It is further found that the use of isothermal grooved surfaces always enhances flow resistance, resulting in an increase of this force. When grooves and heating are applied together, their interaction induces …


Numerical Simulation Of A High Strain Rate Biaxial Compression Apparatus, Michael Lagieski Apr 2018

Numerical Simulation Of A High Strain Rate Biaxial Compression Apparatus, Michael Lagieski

McKelvey School of Engineering Theses & Dissertations

Few experimental methods today are capable of exploring the strength of materials at high strain rates (105 s-1). Those that are capable, such as the Split Hopkinson Bar, Taylor Anvil and Plate Impact suffer from instability and are generally limited to one dimensional wave propagation. Of particular interest is material response under biaxial compression, similar to that seen in inertial confinement fusion. Laser fusion fuel pellets typically undergo large strain rates as well as plastic deformation and non-linear behavior. This work briefly outlines an experimental procedure designed to replicate these large strain rates under biaxial compression using …


Extracting Vibration Characteristics Of A Guitar Using Finite Element, Modal Analysis, And Digital Image Correlation Techniques, Kiran Patil, Javad Baqersad, Daniel Ludwigsen, Yaomin Dong Apr 2018

Extracting Vibration Characteristics Of A Guitar Using Finite Element, Modal Analysis, And Digital Image Correlation Techniques, Kiran Patil, Javad Baqersad, Daniel Ludwigsen, Yaomin Dong

Daniel Ludwigsen

The sound quality generated by the guitar depends on the vibration characteristics (i.e. natural frequencies and mode shapes) of this instrument. Thus, it is of particular interest to the guitar manufacturers to be able to obtain global information about the characteristics of the guitar. Traditional sensors can only measure at discrete locations. However, digital image correlation (DIC) can measure full-field data on the surface of the structure. In the current paper, a finite element (FE) model of a guitar with free boundary configurations was developed using quadratic solid elements. An eigensolution was performed on the FE model to determine its …


Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani Mar 2018

Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani

Doctoral Dissertations

This dissertation is comprised of six chapters. In the first chapter the motivation of this research, which was modeling the deformation behavior and strength characteristics of soils under internal erosion, is briefly explained. In the second chapter a micromechanis-based stress-strain model developed for prediction of sand-silt mixtures behavior is presented. The components of the micromechanics-based model are described and undrained behavior of six different types of sand-silt mixtures is predicted for several samples with different fines contents. The need for a more comprehensive compression model for sand-silt mixtures is identified at the end of this chapter. This desired compression model …


Experimental Examination Of Vorticity Stripping From A Wing-Tip Vortex In Free-Stream Turbulence, Hari C. Ghimire, Sean C. C. Bailey Mar 2018

Experimental Examination Of Vorticity Stripping From A Wing-Tip Vortex In Free-Stream Turbulence, Hari C. Ghimire, Sean C. C. Bailey

Mechanical Engineering Faculty Publications

Time-resolved stereoscopic particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence. The objective of the research was to experimentally investigate the mechanism causing the increased rate of decay of the vortex in the presence of turbulence. It was observed that the circulation of the vortex core experienced periods of rapid loss and recovery when immersed in free-stream turbulence. These events were not observed when the vortex was in a laminar free stream. A connection was made between these events and distortion of the vortex, coinciding with stripping of core fluid from the vortex core. Specifically, …


Superpositioning High Power Lasers For Mid-Air Image Formation, Auston Viotto Mar 2018

Superpositioning High Power Lasers For Mid-Air Image Formation, Auston Viotto

UNO Student Research and Creative Activity Fair

Abstract

This research evaluates different methods to create voxels, 3-dimensional pixels, in air without the need for special glasses or reflections off of surfaces. Research on the advantages of superimposing or the culmination, focusing, of laser light will be conducted. The point of superpositioning/culmination will be evaluated by the brightness of the voxel due to the Rayleigh Scatter Effect. The voxel’s brightness is dependent on the laser output strength and inversely proportional to its wavelength. Once a superimposed/culminated voxel has been created in the lab the next step will be to manipulate the location of the voxel through 3-dimensional space. …


Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian Mar 2018

Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

The electroosmotic flow (EOF) of viscoelastic fluid in a long nanoslit is numerically studied to investigate the rheological property effect of Linear Phan-Thien-Tanner (LPTT) fluid on the fully developed EOF. The non-linear Poisson-Nernst-Planck equations governing the electric potential and the ionic concentration distribution within the channel are adopted to take into account the effect of the electrical double layer (EDL), including the EDL overlap. When the EDL is not overlapped, the velocity profiles for both Newtonian and viscoelastic fluids are plug-like and increase sharply near the charged wall. The velocity profile resembles that of pressure-driven flow when the EDL is …


Resistance Temperature Detectors In A Cryostat Refrigeration System, Kirsten Marie Manahan, Alice Callen Jan 2018

Resistance Temperature Detectors In A Cryostat Refrigeration System, Kirsten Marie Manahan, Alice Callen

STAR Program Research Presentations

The Large Synoptic Survey Telescope (LSST) is a ground-based telescope that will survey the Southern sky every few nights. Located in the telescope will be a 3.2 gigapixel digital camera. To ensure proper instrumentation of the camera, there must be a monitored stable temperature. As part of my research, I assembled resistance temperature detectors and tested them to verify their reliability in measuring temperature in the camera’s cryostat refrigeration cooling system. Resistance temperature detectors function by the principle of thermal resistivity, in which their electrical resistances vary as temperature varies. Through testing, I was able to determine whether these particular …


Learning Local, Quenched Disorder In Plasticity And Other Crackling Noise Phenomena, Stefanos Papanikolaou Jan 2018

Learning Local, Quenched Disorder In Plasticity And Other Crackling Noise Phenomena, Stefanos Papanikolaou

Faculty & Staff Scholarship

When far from equilibrium, many-body systems display behavior that strongly depends on the initial conditions. A characteristic such example is the phenomenon of plasticity of crystalline and amorphous materials that strongly depends on the material history. In plasticity modeling, the history is captured by a quenched, local and disordered flow stress distribution. While it is this disorder that causes avalanches that are commonly observed during nanoscale plastic deformation, the functional form and scaling properties have remained elusive. In this paper, a generic formalism is developed for deriving local disorder distributions from field- response (e.g., stress/strain) timeseries in models of crackling …


Insights Into The Magnetic Dead Layer In La0.7sr0.3mno3 Thin Films From Temperature, Magnetic Field And Thickness Dependence Of Their Magnetization, N. Mottaghi, M.S. Seehra, R. Trappen, S. Kumari, Chih-Yeh Huang, S. Yousefi, G.B. Cabrera, A.H. Romero, M.B. Holcomb Jan 2018

Insights Into The Magnetic Dead Layer In La0.7sr0.3mno3 Thin Films From Temperature, Magnetic Field And Thickness Dependence Of Their Magnetization, N. Mottaghi, M.S. Seehra, R. Trappen, S. Kumari, Chih-Yeh Huang, S. Yousefi, G.B. Cabrera, A.H. Romero, M.B. Holcomb

Faculty & Staff Scholarship

Experimental investigations of the magnetic dead layer in 7.6 nm thick film of La0.7Sr0.3MnO3 (LSMO) are reported. The dc magnetization (M) measurements for a sample cooled to T = 5 K in applied field H = 0 reveal the presence of negative remanent magnetization (NRM) in the M vs. H (magnetic field) measurements as well as in the M vs. T measurements in H = 50 Oe and 100 Oe. The M vs. T data in ZFC (zero-field-cooled) and FC (field-cooled) protocols are used to determine the blocking temperature TB in different H. Isothermal hysteresis loops at differ- ent T …


Automated Cfd Optimization To Maximize Wind Farms Performance And Land Use, Rafael Valotta Rodrigues Jan 2018

Automated Cfd Optimization To Maximize Wind Farms Performance And Land Use, Rafael Valotta Rodrigues

Electronic Theses and Dissertations

In this research, a computational system was designed to analyze and optimize the layout of wind farms under variable operational conditions. At first, a wind turbine computational fluid dynamic (CFD) model was developed covering the near wake. The near wake flow field was validated against near wake velocity data from the MEXICO experiment. The CFD simulation demonstrated that the tip speed ratio and the pitch angle greatly influence the near wake behavior, affecting the velocity deficit and the turbulence intensity profile in this region. The CFD model was extended to cover the far wake, aiming to become a computational tool …


Experimental Laser Powder Bed Fusion System For Difficult To Process Metallic Materials, Syed Zia Uddin Jan 2018

Experimental Laser Powder Bed Fusion System For Difficult To Process Metallic Materials, Syed Zia Uddin

Open Access Theses & Dissertations

The focus of this research was twofold, such as development of defect free fabrication parameters for laser powder bed fusion (LPBF) processing of crack prone or difficult to process metallic materials, and study of the temperature dependence of emissivity for some commonly used metal alloy powders in LPBF process. The later objective extends to the implementation of multiwavelength (MW) pyrometer technology for in situ true surface temperature measurement in LPBF process. LPBF is an additive manufacturing (AM) process capable of layer-by-layer manufacturing by successive laser melting of each layer according to CAD data. AM manufacturing has the inherent advantages of …


Investigation Of Toppling Ball Flight In American Football With A Mechanical Field-Goal Kicker, Chase M Pfeifer, Timothy J. Gay, Jeff A. Hawks, Shane Farritor, Judith M. Burnfield Jan 2018

Investigation Of Toppling Ball Flight In American Football With A Mechanical Field-Goal Kicker, Chase M Pfeifer, Timothy J. Gay, Jeff A. Hawks, Shane Farritor, Judith M. Burnfield

Department of Mechanical and Materials Engineering: Faculty Publications

A mechanical field-goal kicking machine was used to investigate toppling ball flight in American football place-kicking, eliminating a number of uncontrollable impact variables present with a human kicker. Ball flight trajectories were recorded using a triangulation-based projectile tracking system to account for the football’s 3-dimensional position during flight as well as initial launch conditions. The football flights were described using kinematic equations relating to projectile motion including stagnant air drag and were compared to measured trajectories as well as projectile motion equations that exclude stagnant air drag. Measured football flight range deviations from the non-drag equations of projectile motion corresponded …