Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Fast-Framing Ballistic Imaging Of Velocity In An Aerated Spray, David Sedarsky, James Gord, Campbell Carter, Terrence R. Meyer, Mark Linne Nov 2015

Fast-Framing Ballistic Imaging Of Velocity In An Aerated Spray, David Sedarsky, James Gord, Campbell Carter, Terrence R. Meyer, Mark Linne

Terrence R Meyer

We describe further development of ballistic imaging adapted for the liquid core of an atomizing spray. To fully understand spray breakup dynamics, one must measure the velocity and acceleration vectors that describe the forces active in primary breakup. This information is inaccessible to most optical diagnostics, as the signal is occluded by strong scattering in the medium. Ballistic imaging mitigates this scattering noise, resolving clean shadowgram-type images of structures within the dense spray region. We demonstrate that velocity data can be extracted from ballistic images of a spray relevant to fuel-injection applications, by implementing a simple, targeted correlation method for …


A High-Speed X-Ray Detector System For Noninvasive Fluid Flow Measurements, Timothy B. Morgan, Benjamin R. Halls, Terrence R. Meyer, Theodore J. Heindel Oct 2015

A High-Speed X-Ray Detector System For Noninvasive Fluid Flow Measurements, Timothy B. Morgan, Benjamin R. Halls, Terrence R. Meyer, Theodore J. Heindel

Terrence R Meyer

The opaque nature of many multiphase flows has long posed a significant challenge to the visualization and measurement of desired characteristics. To overcome this difficulty, X-ray imaging, both in the form of radiography and computed tomography, has been used successfully to quantify various multiphase flow phenomena. However, the relatively low temporal resolution of typical X-ray systems limit their use to moderately slow flows and time-average values. This paper discusses the development of an X-ray detection system capable of high-speed radiographic imaging that can be used to visualize multiphase flows. Details of the hardware will be given and then applied to …


Detection And Counting Of Micro Scale Particles And Pollen Using A Multi-Aperture Coulter Counter, Ashish Jagtiani, Jiang Zhe, Jun Hu, Joan Carletta Aug 2015

Detection And Counting Of Micro Scale Particles And Pollen Using A Multi-Aperture Coulter Counter, Ashish Jagtiani, Jiang Zhe, Jun Hu, Joan Carletta

Joan Carletta

We demonstrate a high throughput, all-electronic Coulter-type sensor with four sensing microapertures to detect and count micro-scale particles. Four particle samples are utilized for this study: polymethacrylate particles 40 µm and 20 µm in diameter, Juniper Scopulorum (Rocky Mountain Juniper) pollen and Cottonwood pollen particles. The two types of pollen particles are roughly 20 µm in diameter. The particles are mixed with deionized water and forced to pass through the microapertures. Voltage pulses across all four apertures are recorded and analysed. Results demonstrate that the sensor can detect and count particles through its four sensing apertures simultaneously. Thus, the counting …


Detection And Counting Of Micro Scale Particles And Pollen Using A Multi-Aperture Coulter Counter, Ashish Jagtiani, Jiang Zhe, Jun Hu, Joan Carletta Apr 2015

Detection And Counting Of Micro Scale Particles And Pollen Using A Multi-Aperture Coulter Counter, Ashish Jagtiani, Jiang Zhe, Jun Hu, Joan Carletta

Dr. Jiang Zhe

We demonstrate a high throughput, all-electronic Coulter-type sensor with four sensing microapertures to detect and count micro-scale particles. Four particle samples are utilized for this study: polymethacrylate particles 40 µm and 20 µm in diameter, Juniper Scopulorum (Rocky Mountain Juniper) pollen and Cottonwood pollen particles. The two types of pollen particles are roughly 20 µm in diameter. The particles are mixed with deionized water and forced to pass through the microapertures. Voltage pulses across all four apertures are recorded and analysed. Results demonstrate that the sensor can detect and count particles through its four sensing apertures simultaneously. Thus, the counting …


Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason Hattrick-Simpers, Wilbur Hurst, Sesha Srinivasan, James Maslar Mar 2015

Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason Hattrick-Simpers, Wilbur Hurst, Sesha Srinivasan, James Maslar

Jason R. Hattrick-Simpers

An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storagematerials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element …


Self-Assembled Composite Nano-/Micronecklaces With Sio2 Beads In Boron Strings, Hai Ni, Xiaodong Li Feb 2015

Self-Assembled Composite Nano-/Micronecklaces With Sio2 Beads In Boron Strings, Hai Ni, Xiaodong Li

Xiaodong Li

Nano-/micronecklaces with SiO2 beads in boron strings were synthesized by simply sublimating the desired powders in a sealed quartz tube at high temperature. The boron strings have a rectangular cross section with width varying from 80to1000nm while the SiO2 beads bear either spindle or spherical shape with a size ranging from 100nmto5μm. The spacing between the SiO2 beads is uniform in each boron string. Both the boron strings and the SiO2 beads are amorphous and free of defects. The supersaturated vapors of silicon and oxygen induced the SiO2 bead formation.


Inżynieria Chemiczna Ćw., Wojciech M. Budzianowski Jan 2015

Inżynieria Chemiczna Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

-


Tematyka Prac Doktorskich, Wojciech M. Budzianowski Jan 2015

Tematyka Prac Doktorskich, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Zespół Energii Odnawialnej I Zrównoważonego Rozwoju (Eozr), Wojciech M. Budzianowski Dec 2014

Zespół Energii Odnawialnej I Zrównoważonego Rozwoju (Eozr), Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.