Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Studies Of Mixing Processes In Gases And Effects On Combustion And Stability, Frank Paul Kozusko Jr. Jul 1995

Studies Of Mixing Processes In Gases And Effects On Combustion And Stability, Frank Paul Kozusko Jr.

Mathematics & Statistics Theses & Dissertations

Three physical models of laminar mixing of initially separated gases are studied. Two models study the effects of the mixing dynamics on the chemical reactions between the gases. The third model studies the structure and stability of a laminar mixing layer in a binary gas. The three models are:

1. Two ideal and incompressible gases representing fuel and oxidizer are initially at rest and separated across an infinite linear interface in a two dimensional system. Combustion, expected as the gases mix, will lead to a rapid rise in temperature in a localized area, i.e. ignition. The mixing of the gases …


Simulation Of Active Control Of Asymmetric Flows Around Slender Pointed Forebodies, Hazem Sharaf El-Din Oct 1994

Simulation Of Active Control Of Asymmetric Flows Around Slender Pointed Forebodies, Hazem Sharaf El-Din

Mechanical & Aerospace Engineering Theses & Dissertations

At high angles of attack, the flowfield over slender forebodies becomes asymmetric with substantial side force, which may exceed the available control capability. The unsteady compressible Navier-Stokes equations are used to investigate the effectiveness of different active control methods to alleviate and possibly eliminate the flow asymmetry and the subsequent side force. Although the research work focuses on active control methods, a passive control method has been investigated. The implicit, Roe flux-difference splitting, finite volume scheme is used for the numerical computations. Both locally-conical and three-dimensional solutions of the Navier-Stokes equations are obtained.

The asymmetric flow over five-degree semi-apex angle …


Unsteady Flow Simulations About Moving Boundary Configurations Using Dynamic Domain Decomposition Techniques, Guan-Wei Yen Apr 1994

Unsteady Flow Simulations About Moving Boundary Configurations Using Dynamic Domain Decomposition Techniques, Guan-Wei Yen

Mechanical & Aerospace Engineering Theses & Dissertations

A computational method is developed to solve the coupled governing equations of an unsteady flowfield and those of rigid-body dynamics in six degrees-of-freedom (6-DOF). This method is capable of simulating the unsteady flowfields around multiple component configurations with at least one of the components in relative motion with respect to the others. Two of the important phenomena that such analyses can help us to understand are the unsteady aerodynamic interference and the boundary-induced component of such a flowfield. By hybridizing two dynamic domain decomposition techniques, the grid generation task is simplified, the computer memory requirement is reduced, and the governing …


On Shock Capturing For Liquid And Gas Media, Tze Jang Chen Jul 1991

On Shock Capturing For Liquid And Gas Media, Tze Jang Chen

Mathematics & Statistics Theses & Dissertations

The numerical investigation of shock phenomena in gas or liquid media where a specifying relation for internal energy is absent poses special problems. Classically, for gas dynamics the usual procedure is to employ a splitting scheme to remove the source terms from the Euler equations, then up-wind biased shock capturing algorithms are built around the Riemann problem for the system which remains. However, in the case where the Euler equations are formulated in the term of total enthalpy, a technical difficulty associated with equation splitting forces a pressure time derivative to be treated as a source term. This makes it …