Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist Dec 2016

Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist

Masters Theses

This work demonstrates and analyses a new flow candidate for describing the internal gaseous motion in simulated rocket motors. The fundamental features of this solution include the conservation of key system properties also incorporated in the classic Taylor-Culick (TC) system (i.e. inviscid, axisymmetric, steady and rotational properties), while allowing for the development of a swirling velocity component. The work compares the new solution to the development and formulation of the classic TC system, ultimately identifying that both the new and classic solutions are special cases of the Bragg-Hawthorne equation. Following this development, the text then explores the development of energy-optimized …


A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price Jul 2016

A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price

Masters Theses

This thesis presents the design for a novel haptic interface for large-format touchscreens. Techniques such as electrovibration, ultrasonic vibration, and external braked devices have been developed by other researchers to deliver haptic feedback to touchscreen users. However, these methods do not address the need for spatial constraints that only restrict user motion in the direction of the constraint. This technology gap contributes to the lack of haptic technology available for touchscreen-based upper-limb rehabilitation, despite the prevalent use of haptics in other forms of robotic rehabilitation. The goal of this thesis is to display kinesthetic haptic constraints to the touchscreen user …


Improving Ventricular Catheter Design Through Computational Fluid Dynamics, Sofy Hefets Weisenberg May 2016

Improving Ventricular Catheter Design Through Computational Fluid Dynamics, Sofy Hefets Weisenberg

Masters Theses

Cerebrospinal fluid (CSF) shunts are fully implantable medical devices that are used to treat patients suffering from conditions characterized by elevated intracranial pressure, such as hydrocephalus. In cases of shunt failure or malfunction, patients are often required to endure one or more revision surgeries to replace all or part of the shunt. One of the primary causes of CSF shunt failure is obstruction of the ventricular catheter, a component of the shunt system implanted directly into the brain's ventricular system. This work aims to improve the design of ventricular catheters in order to reduce the incidence of catheter obstruction and …


Numerical Analysis Of Flexural Slip During Viscoelastic Buckle Folding, Davi Rodrigues Damasceno Jan 2016

Numerical Analysis Of Flexural Slip During Viscoelastic Buckle Folding, Davi Rodrigues Damasceno

Masters Theses

"Flexural slip is considered to be an important folding mechanism contributing in the development of different folds such as chevron, and kink-band buckle folds. Various filed studies have provided a general conceptual and qualitative understanding of flexural slip. However, quantitative evidence of the importance of the flexural slip mechanism during fold evolution is sparse, as the actual amount of surface parallel displacement, and timing, is difficult to measure accurately, due to the lack of suitable strain markers.

In this study 2D finite element analysis is used to overcome these disadvantages and to simulate flexural slip during viscoelastic buckle folding. Variations …


Composite Model Representation For Computer Aided Design Of Functionally Gradient Materials, Fangquan Wang Jan 2016

Composite Model Representation For Computer Aided Design Of Functionally Gradient Materials, Fangquan Wang

Masters Theses

"Functionally Gradient Materials (FGMs) feature smooth transition from one material to another within a single object. FGMs modeling is considered to be one of the new challenges in Computer Aided Design (CAD) area. To overcome this challenge, this thesis presents a composite approach to model FGMs. The input in STL format can be meshed and voxelized in FGMs modeling system. The material composition in each voxel can be generated from multiple different types of control features. And LTI filters including Gaussian Filter and Average Filter are applied to blur default material features in order to generate FGMs inside models. The …


A Linear Matrix Inequality-Based Approach For The Computation Of Actuator Bandwidth Limits In Adaptive Control, Daniel Robert Wagner Jan 2016

A Linear Matrix Inequality-Based Approach For The Computation Of Actuator Bandwidth Limits In Adaptive Control, Daniel Robert Wagner

Masters Theses

"Linear matrix inequalities and convex optimization techniques have become popular tools to solve nontrivial problems in the field of adaptive control. Specifically, the stability of adaptive control laws in the presence of actuator dynamics remains as an important open control problem. In this thesis, we present a linear matrix inequalities-based hedging approach and evaluate it for model reference adaptive control of an uncertain dynamical system in the presence of actuator dynamics. The ideal reference dynamics are modified such that the hedging approach allows the correct adaptation without being hindered by the presence of actuator dynamics. The hedging approach is first …