Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang May 2023

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Development Of Modeling And Simulation Platform For Path-Planning And Control Of Autonomous Underwater Vehicles In Three-Dimensional Spaces, Sai Krishna Abhiram Kondapalli May 2022

Development Of Modeling And Simulation Platform For Path-Planning And Control Of Autonomous Underwater Vehicles In Three-Dimensional Spaces, Sai Krishna Abhiram Kondapalli

Mechanical & Aerospace Engineering Theses & Dissertations

Autonomous underwater vehicles (AUVs) operating in deep sea and littoral environments have diverse applications including marine biology exploration, ocean environment monitoring, search for plane crash sites, inspection of ship-hulls and pipelines, underwater oil rig maintenance, border patrol, etc. Achieving autonomy in underwater vehicles relies on a tight integration between modules of sensing, navigation, decision-making, path-planning, trajectory tracking, and low-level control. This system integration task benefits from testing the related algorithms and techniques in a simulated environment before implementation in a physical test bed. This thesis reports on the development of a modeling and simulation platform that supports the design and …


Computational Design Of Nonlinear Stress-Strain Of Isotropic Materials, Askhad M.Polatov, Akhmat M. Ikramov, Daniyarbek Razmukhamedov May 2021

Computational Design Of Nonlinear Stress-Strain Of Isotropic Materials, Askhad M.Polatov, Akhmat M. Ikramov, Daniyarbek Razmukhamedov

Chemical Technology, Control and Management

The article deals with the problems of numerical modeling of nonlinear physical processes of the stress-strain state of structural elements. An elastoplastic medium of a homogeneous solid material is investigated. The results of computational experiments on the study of the process of physically nonlinear deformation of isotropic elements of three-dimensional structures with a system of one- and double-periodic spherical cavities under uniaxial compression are presented. The influence and mutual influence of stress concentrators in the form of spherical cavities, vertically located two cavities and a horizontally located system of two cavities on the deformation of the structure are investigated. Numerical …


Design And Modeling Of A New Biomimetic Soft Robotic Jellyfish Using Ipmc-Based Electroactive Polymers, Zakai J. Olsen, Kwang J. Kim Nov 2019

Design And Modeling Of A New Biomimetic Soft Robotic Jellyfish Using Ipmc-Based Electroactive Polymers, Zakai J. Olsen, Kwang J. Kim

Mechanical Engineering Faculty Research

Smart materials and soft robotics have been seen to be particularly well-suited for developing biomimetic devices and are active fields of research. In this study, the design and modeling of a new biomimetic soft robot is described. Initial work was made in the modeling of a biomimetic robot based on the locomotion and kinematics of jellyfish. Modifications were made to the governing equations for jellyfish locomotion that accounted for geometric differences between biology and the robotic design. In particular, the capability of the model to account for the mass and geometry of the robot design has been added for better …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


Experimental And Numerical Study Of A Proton Exchange Membrane Electrolyzer For Hydrogen Production, Sachin S. Deshmukh Jan 2009

Experimental And Numerical Study Of A Proton Exchange Membrane Electrolyzer For Hydrogen Production, Sachin S. Deshmukh

UNLV Theses, Dissertations, Professional Papers, and Capstones

Hydrogen as a fuel source has received attention from researchers globally due to its potential to replace fossil based fuels for energy production. Research is being performed on hydrogen production, storage and utilization methods to make its use economically feasible relative to current energy sources. The PEM electrolyzer is used to produce hydrogen and oxygen using water and electricity. Focus of our study is to provide a benchmark experiment and numerical model of a single cell electrolyzer that can assist in improving the current state of understanding of this system. Parametric analysis of an experimental cell was performed to understand …