Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

High-Speed Three-Dimensional Shape Measurement System Using A Modified Twoplus- One Phase-Shifting Algorithm, Song Zhang, Shing-Tung Yau Nov 2007

High-Speed Three-Dimensional Shape Measurement System Using A Modified Twoplus- One Phase-Shifting Algorithm, Song Zhang, Shing-Tung Yau

Song Zhang

This paper describes a high-resolution, real-time, three-dimensional shape measurement system using the modified two-plus-one phase-shifting algorithm. The data acquisition speed is as high as 60frames∕s with an image resolution of 640×480pixels per frame. Experiments demonstrated that the system was able to acquire the dynamic changing objects such as facial geometric shape changes when the subject is speaking, and the modified two-plus-one phase-shifting algorithm can further alleviate the error due to motion. Applications of this system include manufacturing, online inspection, medical imaging, compute vision, and computer graphics.


Platinum Nanoparticle Shape Effects On Benzene Hydrogenation Selectivity, Kaitlin M. Bratlie, Hyunjoo Lee, Kyriakos Komvopoulos, Peidong Yang, Gabor A. Somorjai Oct 2007

Platinum Nanoparticle Shape Effects On Benzene Hydrogenation Selectivity, Kaitlin M. Bratlie, Hyunjoo Lee, Kyriakos Komvopoulos, Peidong Yang, Gabor A. Somorjai

Kaitlin M. Bratlie

Benzene hydrogenation was investigated in the presence of a surface monolayer consisting of Pt nanoparticles of different shapes (cubic and cuboctahedral) and tetradecyltrimethylammonium bromide (TTAB). Infrared spectroscopy indicated that TTAB binds to the Pt surface through a weak C-HâââPt bond of the alkyl chain. The catalytic selectivity was found to be strongly affected by the nanoparticle shape. Both cyclohexane and cyclohexene product molecules were formed on cuboctahedral nanoparticles, whereas only cyclohexane was produced on cubic nanoparticles. These results are the same as the product selectivities obtained on Pt(111) and Pt(100) single crystals in earlier studies. The apparent activation energy for …


3d Data Merging Using Holoimage, Song Zhang, Shing-Tung Yau Sep 2007

3d Data Merging Using Holoimage, Song Zhang, Shing-Tung Yau

Song Zhang

Three-dimensional data merging is critical for full-field 3-D shape measurement. 3-D range data patches, acquired either from different sensors or from the same sensor in different viewing angles, have to be merged into a single piece to facilitate future data analysis. In this research, we propose a novel method for 3-D data merging using Holoimage. Similar to the 3-D shape measurement system using a phase-shifting method, Holoimage is a phase-shifting-based computer synthesized fringe image. The virtual projector projects the phase-shifted fringe pattern onto the object, the reflected fringe images are rendered on the screen, and the Holoimage is generated by …


Phase Error Compensation For A 3-D Shape Measurement System Based On The Phase-Shifting Method, Song Zhang, Peisen S. Huang Jun 2007

Phase Error Compensation For A 3-D Shape Measurement System Based On The Phase-Shifting Method, Song Zhang, Peisen S. Huang

Song Zhang

This paper describes a novel phase error compensation method for reducing the measurement error caused by nonsinusoidal waveforms in phase-shifting methods. For 3-D shape measurement systems using commercial video projectors, the nonsinusoidal waveform of the projected fringe patterns as a result of the nonlinear gamma of projectors causes significant phase measurement error and therefore shape measurement error. The proposed phase error compensation method is based on our finding that the phase error due to the nonsinusoidal waveform depends only on the nonlinearity of the projector’s gamma. Therefore, if the projector’s gamma is calibrated and the phase error due to the …


Interface Reorientation During Coherent Phase Transformations, Valery I. Levitas, I. B. Ozsoy, D. L. Preston Apr 2007

Interface Reorientation During Coherent Phase Transformations, Valery I. Levitas, I. B. Ozsoy, D. L. Preston

Valery I. Levitas

The universal thermodynamic driving force for coherent plane interface reorientation (IR) during first-order phase transformations (PT) in solids is derived. The relation between the rates of IR and interface propagation (IP) and the corresponding driving forces are derived for combined athermal and drag interface friction. The coupled evolution of IR and IP during cubic-tetragonal and tetragonal-orthorhombic PTs under three-dimensional loading is studied. An instability in the interface orientation is shown to have the features of a first-order PT.


Generic Nonsinusoidal Phase Error Correction For Three-Dimensional Shape Measurement Using A Digital Video Projector, Song Zhang, Shing-Tung Yau Jan 2007

Generic Nonsinusoidal Phase Error Correction For Three-Dimensional Shape Measurement Using A Digital Video Projector, Song Zhang, Shing-Tung Yau

Song Zhang

A structured light system using a digital video projector is widely used for 3D shape measurement. However, the nonlinear γ of the projector causes the projected fringe patterns to be nonsinusoidal, which results in phase error and therefore measurement error. It has been shown that, by using a small look-up table (LUT), this type of phase error can be reduced significantly for a three-step phase-shifting algorithm. We prove that this algorithm is generic for any phase-shifting algorithm. Moreover, we propose a new LUT generation method by analyzing the captured fringe image of a flat board directly. Experiments show that this …


A Fully Lagrangian Numerical Method For Calculating The Dynamics Of Oscillating Micro And Nanoscale Objects Immersed In Fluid, Nicole N. Hashemi, Mark Paul, Javier Alcazar, Raul Radovitzky Jan 2007

A Fully Lagrangian Numerical Method For Calculating The Dynamics Of Oscillating Micro And Nanoscale Objects Immersed In Fluid, Nicole N. Hashemi, Mark Paul, Javier Alcazar, Raul Radovitzky

Nastaran Hashemi

Many micro and nano-technologies rely upon the complicated motion of objects immersed in a viscous fluid. It is often the case that for such problems analytical theory is not available to quantitatively describe and predict the device dynamics. In addition, the numerical simulation of such devices involves moving boundaries and use of the standard Eulerian computational approaches are often difficult to implement. In order to address this problem we use and validate a fully Lagrangian finite element approach that treats the moving boundaries in a natural manner. We validate the method for use in calculating the dynamics of oscillating objects …


Multilevel Quality-Guided Phase Unwrapping Algorithm For Real-Time Three-Dimensional Shape Reconstruction, Song Zhang, Xiaolin Li, Shing-Tung Yau Jan 2007

Multilevel Quality-Guided Phase Unwrapping Algorithm For Real-Time Three-Dimensional Shape Reconstruction, Song Zhang, Xiaolin Li, Shing-Tung Yau

Song Zhang

A multilevel quality-guided phase unwrapping algorithm for real-time 3D shape measurement is presented. The quality map is generated from the gradient of the phase map. Multilevel thresholds are used to unwrap the phase level by level. Within the data points in each level, a fast scan-line algorithm is employed. The processing time of this algorithm is approximately 18.3  ms for an image size of 640×480 pixels in an ordinary computer. We demonstrate that this algorithm can be implemented into our real-time 3D shape measurement system for real-time 3D reconstruction. Experiments show that this algorithm improves the previous scan-line phase unwrapping …