Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Development Of Advanced Solid-State Electrolytes And Interfaces For High-Performance Sulfide-Based All-Solid-State Lithium Batteries, Feipeng Zhao Aug 2021

Development Of Advanced Solid-State Electrolytes And Interfaces For High-Performance Sulfide-Based All-Solid-State Lithium Batteries, Feipeng Zhao

Electronic Thesis and Dissertation Repository

All-solid-state lithium batteries (ASSLBs) have become increasingly attractive due to the demand of high-energy-density and high-safety lithium-ion batteries for electric vehicles (EVs). As the core component of ASSLBs, solid-state electrolytes (SSEs) are regarded as essential to determine the electrochemical performance of ASSLBs. The inorganic SSEs is one of the most important categories in all developed SSEs, representing the advance of superionic lithium conductors as well as the cornerstone to construct flexible polymer/inorganic composite SSEs. The sulfide-based inorganic SSE is one of the most promising SSEs that is receiving a lot of attentions, because only sulfide SSEs can show ultrahigh ionic …


Correlating The Physicochemical Properties Of Magnesium Stearate With Tablet Dissolution And Lubrication, Julie L. Calahan Jan 2020

Correlating The Physicochemical Properties Of Magnesium Stearate With Tablet Dissolution And Lubrication, Julie L. Calahan

Theses and Dissertations--Pharmacy

Magnesium stearate (MgSt) is the most commonly used pharmaceutical excipient and is present in over half the tablet formulations on the market. In spite of its popularity as an effective lubricant, it has been repeatedly recognized that there is significant variability between MgSt samples, which can cause inconsistent lubrication between batches of MgSt. The hypothesis of this research is that the batch-to-batch variability in tablet lubrication and dissolution observed in tablet formulations containing different MgSt samples can be correlated with differences in MgSt physicochemical properties (fatty acid salt composition, crystal hydrate form, particle size and surface area). Developing correlations between …


Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt Jan 2020

Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt

Theses and Dissertations--Mechanical Engineering

In order to understand the oxidation of solid carbon materials by oxygen-containing gases, carbon oxidation has to be studied on the atomic level where the surface reactions occur. Graphene and graphite are etched by oxygen to form characteristic pits that are scattered across the material surface, and pitting in turn leads to microstructural changes that determine the macroscopic oxidation behavior. While this is a well-documented phenomenon, it is heretofore poorly understood due to the notorious difficulty of experiments and a lack of comprehensive computational studies. The main objective of the present work is the development of a computational framework from …


Development And Thermodynamic Analysis Of An Integrated Mild/Partial Gasification Combined Cycle (Impgc) Under Green And Brown Field Conditions With And Without Carbon Capture, Henry A. Long Iii Dec 2018

Development And Thermodynamic Analysis Of An Integrated Mild/Partial Gasification Combined Cycle (Impgc) Under Green And Brown Field Conditions With And Without Carbon Capture, Henry A. Long Iii

University of New Orleans Theses and Dissertations

Coal is a very prominent energy source in the world, but it is environmentally unattractive due to its high sulfur and ash content as well as its alleged contribution towards climate change, but it is affordable, abundant, and has high energy content. Thus, utilizing coal in a cleaner and more efficient way has become necessary. One promising clean coal technology involves fully gasifying coal into synthesis gas, cleaning it, and feeding it into a high-efficiency combined cycle, such as an Integrated Gasification Combined Cycle (IGCC). Inspired by the recent success of warn gas cleanup (WGCU), mild and partial gasification are …


Experimental Evaluation Of Uranyl Transport Into Mesoporous Silica Gel Using Fluorescence, Brandon M. Dodd Jan 2018

Experimental Evaluation Of Uranyl Transport Into Mesoporous Silica Gel Using Fluorescence, Brandon M. Dodd

Theses and Dissertations

This research investigated parameters that can affect the use of nanoporous silica gel as a media for accumulating a detectable amount of uranium. The unique fluorescence of the Uranyl (UO22+) ion was used to evaluate the transport kinetics and accumulation within silica gel in a static fluid and under pressure driven flow. The addition of fluid flow decreased the time constant from on the order of an hour to approximately 2s with a very low fluid velocity of 0.36cm/s. The 0.36cm/s fluid velocity was found to be the critical velocity above which there was no gain in …


Wetting, Superhydrophobicity, And Icephobicity In Biomimetic Composite Materials, Vahid Hejazi May 2014

Wetting, Superhydrophobicity, And Icephobicity In Biomimetic Composite Materials, Vahid Hejazi

Theses and Dissertations

Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range …


Characterization Techniques And Electrolyte Separator Performance Investigation For All Vanadium Redox Flow Battery, Zhijiang Tang Dec 2013

Characterization Techniques And Electrolyte Separator Performance Investigation For All Vanadium Redox Flow Battery, Zhijiang Tang

Doctoral Dissertations

The all-vanadium redox flow battery (VRFB) is an excellent prospect for large scale energy storage in an electricity grid level application. High battery performance has lately been achieved by using a novel cell configuration with advanced materials. However, more work is still required to better understand the reaction kinetics and transport behaviors in the battery to guide battery system optimization and new battery material development. The first part of my work is the characterization of the battery systems with flow-through or flow-by cell configurations. The configuration difference between two cell structures exhibit significantly different polarization behavior. The battery output can …


Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi May 2012

Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi

Electronic Thesis and Dissertation Repository

Controlling transport phenomena in liquid and gaseous media through electrostatic forces has brought new important scientific and industrial applications. Although numerous EHD applications have been explored and extensively studied so far, the fast-growing technologies, mainly in the semiconductor industry, introduce new challenges and demands. These challenges require enhancement of heat transfer and mass transport in small scales (sometimes in molecular scales) to remove highly concentrated heat fluxes from reduced size devices. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in both macro and micro-scale devices.

Several existing problems in EHD heat transfer enhancements were investigated in this thesis. …