Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Experimental And Theoretical Investigation Of Mechanical Response Of Laser-Sintered Diamond Lattice Structures, Clayton Neff, Neil Hopkinson, Nathan B. Crane Aug 2018

Experimental And Theoretical Investigation Of Mechanical Response Of Laser-Sintered Diamond Lattice Structures, Clayton Neff, Neil Hopkinson, Nathan B. Crane

Faculty Publications

Typically additive manufacturing (AM) processes are limited to a single material per part while many products benefit from the integration of multiple materials with varied properties. To achieve the benefits of multiple materials, the geometric freedom of AM could be used to build internal structures that emulate a range of different material properties such as stiffness, Poisson’s ratio, and elastic limit using only one build material. This paper examines the range of properties that can be simulated using diamond lattice structures manufactured from Nylon 12 with a commercial laser sintering process. Diamond lattices were fabricated with a unit cell length …


Impact Of Extended Sintering Times On Mechanical Properties In Pa-12 Parts Produced By Powderbed Fusion Processes, Garrett Craft, Justin Nussbaum, Nathan B. Crane, J. P. Harmon Aug 2018

Impact Of Extended Sintering Times On Mechanical Properties In Pa-12 Parts Produced By Powderbed Fusion Processes, Garrett Craft, Justin Nussbaum, Nathan B. Crane, J. P. Harmon

Faculty Publications

Additive Manufacturing provides many advantages in reduced lead times and increased geometric freedom compared to traditional manufacturing methods, but material properties are often reduced. This paper considers powder bed fusion of polyamide 12 (PA12, Nylon 12) produced by three different processes: laser sintering (LS), multijet fusion (MJF)/high speed sintering (HSS), and large area projection sintering (LAPS). While all utilize similar PA12 materials, they are found to differ significantly in mechanical properties especially in elongation to break. The slower heating methods (MJF/HSS and LAPS) produce large elongation at break with the LAPS process showing 10x elongation and MJF/HSS exhibiting 2.5x the …


Modeling And Validations Of Control Parameters For Material Extrusion-Based Additive Manufacturing Of Thixotropic Aluminum Alloys., Lars Herhold Aug 2018

Modeling And Validations Of Control Parameters For Material Extrusion-Based Additive Manufacturing Of Thixotropic Aluminum Alloys., Lars Herhold

Electronic Theses and Dissertations

Additive Manufacturing (AM) with metals has been accomplished mainly through powder bed fusion processes. Initial experiments and simulations using Material Extrusion Additive Manufacturing (MEAM) have been performed by various researchers especially using low melting alloys. Recently Stratasys Inc. submitted a patent application for the use of their Material Extrusion technology also called Fused Deposition Modeling (FDM) where they describe the process using thixotropic semi-solid alloys. Currently this process using semi-solid, engineering type alloys such as A356 or THIXALLOY 540 aluminum have not been researched to evaluate the control parameters. This research combines the in-depth knowledge of applying thixotropic semi-solid aluminum …


Additive Manufacturing Powder Removal, Madison A. Lignell, Tyler W. Laird, Kurt K. Reed Jun 2018

Additive Manufacturing Powder Removal, Madison A. Lignell, Tyler W. Laird, Kurt K. Reed

Mechanical Engineering

Metal powder-bed fusion is an additive manufacturing process which enables the creation of unique shapes in metal parts that would otherwise be difficult, expensive, or impossible to machine. Metallic powder is melted and fused together by either a laser or electron beam to produce parts quickly. The excess powder covers newly printed parts and can be difficult to remove from small internal features. The scope of this project is to design a device that effectively removes the powder from newly printed parts safely, while reclaiming as much powder as possible for reuse. The solution for this project must be able …


Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen Apr 2018

Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen

Electronic Thesis and Dissertation Repository

Conjugated polymers are a class of electromechanically active materials that can produce motion in response to an electric potential. This motion can be harnessed to perform mechanical work, and therefore these materials are particularly well suited for use as sensors and actuators in microelectromechanical systems. Conventional methods to fabricate conjugated polymer actuators result in planar morphologies that limit fabricated devices to simplistic linear or bending actuation modes. To overcome this limitation, this work develops a conjugated polymer formulation and associated additive manufacturing method capable of realizing three-dimensional conductive polymer structures. A light-based additive manufacturing technique known as vat polymerization is …


Impact Of Vapor Polishing On Surface Quality And Mechanical Properties Of Extruded Abs, Clayton Neff, Matthew Trapuzzano, Nathan B. Crane Jan 2018

Impact Of Vapor Polishing On Surface Quality And Mechanical Properties Of Extruded Abs, Clayton Neff, Matthew Trapuzzano, Nathan B. Crane

Faculty Publications

Purpose — Additive manufacturing (AM) is readily capable of producing models and prototypes of complex geometry and is advancing in creating functional parts. However, AM processes typically underperform traditional manufacturing methods in mechanical properties, surface roughness, and hermeticity. Solvent vapor treatments (vapor polishing) are commonly used to improve surface quality in thermoplastic parts, but the results are poorly characterized.

Design/methodology/approach — This work quantifies the surface roughness change and also evaluates the effect on hermeticity and mechanical property impacts for “as-printed” and acetone vapor-polished ABS tensile specimens of 1, 2, and 4 mm thicknesses produced by material extrusion (FDM).

Findings …