Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Low Temperature Solution-Processed Sb:Sno2 Nanocrystals For Efficient Planar Perovskite Solar Cells, Yang Bai, Yanjun Fang, Yehao Deng, Qi Wang, Jingjing Zhao, Xiaopeng Zheng, Yang Zhang, Jinsong Huang Jan 2016

Low Temperature Solution-Processed Sb:Sno2 Nanocrystals For Efficient Planar Perovskite Solar Cells, Yang Bai, Yanjun Fang, Yehao Deng, Qi Wang, Jingjing Zhao, Xiaopeng Zheng, Yang Zhang, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Inorganic metal oxide electron-transport layers (ETLs) have the potential to yield perovskite solar cells with improved stability, but generally need high temperature to form conductive and defect-less forms, which is not compatible with the fabrication of flexible and tandem solar cells. Here, we demonstrate a facile strategy for developing efficient inorganic ETLs by doping SnO2 nanocrystals (NCs) with a small amount of Sb using a low-temperature solution-processed method. The electrical conductivity was remarkably enhanced by Sb-doping, which increased the carrier concentration in Sb:SnO2 NCs. Moreover, the upward shift of the Fermi level owing to doping results in improved …


Electrochemical Capture Of Co2 From Natural Gas Using A High-Temperature Ceramic-Carbonate Membrane, Jingjing Tong, Lingling Zhan, Jie Fang, Minfang Han, Kevin Huang Jan 2015

Electrochemical Capture Of Co2 From Natural Gas Using A High-Temperature Ceramic-Carbonate Membrane, Jingjing Tong, Lingling Zhan, Jie Fang, Minfang Han, Kevin Huang

Faculty Publications

This study reports the first investigation of using a ceramic-carbonate dual-phase membrane to electrochemically separate CO2 from a simulated natural gas. The CO2 permeation flux density was systematically studied as a function of temperature, CO2 partial pressure and time. As expected, the flux density was observed to increase with temperature and CO2 partial pressure. Long-term stability test showed that flux density experienced an initial performance-improving “break-in” period followed by a slow decay. Post-test microstructural analysis suggested that a gradual loss of carbonate during the test could be the cause of the flux-time behavior observed.