Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Aerodynamics And Vibrations Of A Helicopter Rotor Blade, Mohammad Khairul Habib Pulok Aug 2022

Aerodynamics And Vibrations Of A Helicopter Rotor Blade, Mohammad Khairul Habib Pulok

University of New Orleans Theses and Dissertations

The nature of the aerodynamic environment surrounding a helicopter causes a significant amount of vibration to its whole body. Among different sources of vibrations, the aerodynamic loading on the main rotor blade is the major contributor. Therefore, analyzing a rotor blade's vibration characteristics and aerodynamic behavior becomes essential. The vortex characteristics and the wake surrounding a helicopter rotor blade play an important role because they affect the aerodynamic behavior of the rotor blade. An advanced mathematical and computational model of rotor wake and blade vortex gives a better understanding of the helicopter rotor dynamics. This study develops computational models of …


Strain-Based Design Of Steel-Polymer-Steel Composite Pipes, Vul Thang May 2022

Strain-Based Design Of Steel-Polymer-Steel Composite Pipes, Vul Thang

University of New Orleans Theses and Dissertations

Many offshore single-wall pipelines and structural failures have occurred in the past. As a result, lives were lost, and billions of dollars were spent. In addition, natural disasters such as earthquake fault zones can cause a large volume of soil movement. This can easily damage single-wall pipelines or piles of fixed offshore platforms in the earthquake fault zone.

Currently, the single-wall pipelines are used for the offshore and onshore oil and gas industry. This research investigated the use of double-wall composite pipe steel-polymer-steel (SPS) in place of single-wall pipe to prevent such failures. The double-wall composite pipe has a larger …


Numerical Study On Oscillating Flow Over A Flat Plate Using Pseudo-Compressibility In Intermittent Turbulent Regime, Shivank Srivastava Mr. May 2021

Numerical Study On Oscillating Flow Over A Flat Plate Using Pseudo-Compressibility In Intermittent Turbulent Regime, Shivank Srivastava Mr.

University of New Orleans Theses and Dissertations

A Computational Fluid Dynamic (CFD) in-house code is developed to study unsteady characteristics of incompressible oscillating boundary layer flow over a flat plate under laminar and intermittently turbulent condition using pseudo-compressible unsteady Reynolds Averaged Navier- Stokes (RANS) model. In the in-house code, the two-dimensional, unsteady conservation of mass and momentum equations are discretized using finite difference techniques which employs second order accurate (based on Taylor series) central differencing for spatial derivatives and second order Runge-Kutta accurate differencing for temporal derivatives. The in-house code employs Fully Explicit-Finite Difference technique (FEFD) to solve the governing differential equations of the mathematical model. In …


A Numerical And Experimental Study Of Lid Driven Square Cavity Flow For Laminar And Turbulent Cases, Abdullah Bin Naeem Dec 2020

A Numerical And Experimental Study Of Lid Driven Square Cavity Flow For Laminar And Turbulent Cases, Abdullah Bin Naeem

University of New Orleans Theses and Dissertations

Experimental and numerical studies are performed on steady and unsteady lid-driven cavity flow for laminar flow regime. In the experiments, a PIV and an LDA were employed to measure the global and local velocities, respectively inside a cavity of AR 1.0. The velocity vector plots and streamline plots which represent unsteady circulation patterns are obtained using the PIV. The steady local velocities measured with LDA are then used to calibrate the PIV measurements. The numerical study is performed using a commercial CFD solver. For turbulent flow simulation RANS equations with K-Epsilon closure model were used. From the PIV calibration study, …


A Computational Fluid Dynamics Study On Bidirectional Glenn Shunt Flow With An Additional Pulsatile Flow Through A Modified Blalock-Taussig Shunt, Seda Aslan May 2017

A Computational Fluid Dynamics Study On Bidirectional Glenn Shunt Flow With An Additional Pulsatile Flow Through A Modified Blalock-Taussig Shunt, Seda Aslan

University of New Orleans Theses and Dissertations

The blood flow through the Bidirectional Glenn shunt (BGS) and modified Blalock-Taussig shunt (mBTS) to the pulmonary arteries (PAs) was analyzed using Computational Fluid Dynamics. This study consisted of the steady and pulsatile cases. In case one, the results of blood flow through the BGS for the Newtonian and non-Newtonian viscosity models were compared. Case two focused on having an additional pulsatile blood flow through the mBTS using the non-Newtonian Carreau viscosity model. The geometries were created based on the angiograms. In case one, boundary conditions to be specified at the inlets were obtained from the flow rate measurements via …


A Numerical Study Of Compressible Lid Driven Cavity Flow With A Moving Boundary, Amer Hussain May 2016

A Numerical Study Of Compressible Lid Driven Cavity Flow With A Moving Boundary, Amer Hussain

University of New Orleans Theses and Dissertations

A two-dimensional (2-D), mathematical model is adopted to investigate the development of circulation patterns for compressible, laminar, and shear driven flow inside a rectangular cavity. The bottom of the cavity is free to move at a specified speed and the aspect ratio of the cavity is changed from 1.0 to 1.5. The vertical sides and the bottom of the cavity are assumed insulated. The cavity is filled with a compressible fluid with Prandtl number, Pr =1. The governing equations are solved numerically using the commercial Computational Fluid Dynamics (CFD) package ANSYS FLUENT 2015 and compared with the results for the …


Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii Dec 2015

Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii

University of New Orleans Theses and Dissertations

An anguilliform swimming robot replicating an idealized motion is a complex marine vehicle necessitating both a theoretical and experimental analysis to completely understand its propulsion characteristics. The ideal anguilliform motion within is theorized to produce ``wakeless'' swimming (Vorus, 2011), a reactive swimming technique that produces thrust by accelerations of the added mass in the vicinity of the body. The net circulation for the unsteady motion is theorized to be eliminated.

The robot was designed to replicate the desired, theoretical motion by applying control theory methods. Independent joint control was used due to hardware limitations. The fluid velocity vectors in the …


Cruise Ship Preliminary Design: The Influence Of Design Features On Profitability, Justin Epstein Dec 2014

Cruise Ship Preliminary Design: The Influence Of Design Features On Profitability, Justin Epstein

University of New Orleans Theses and Dissertations

This thesis provides a means to estimate the physical and performance characteristics of a preliminary cruise ship design. The techniques utilized to estimate these characteristics are showcased in the user-friendly interface known as the Cruise Ship Analysis Tool (CSAT). Using the CSAT, the implications that design feature decisions in the preliminary design stage have on a cruise ship’s profitability is analyzed. Then, the most profitable design feature assemblage among a finite number of varying design feature combinations is estimated and compared among cruise ship designs with different passenger carrying capacities. Profitability is analyzed using the measure of merit (MOM) known …


Analysis Of Biomass/Coal Co-Gasification For Integrated Gasification Combined Cycle (Igcc) Systems With Carbon Capture, Henry A. Long Iii Dec 2011

Analysis Of Biomass/Coal Co-Gasification For Integrated Gasification Combined Cycle (Igcc) Systems With Carbon Capture, Henry A. Long Iii

University of New Orleans Theses and Dissertations

In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS). Great efforts have been spent on investigating ways to improve the efficiency, reduce costs, and further reduce greenhouse gas emissions. This study focuses on investigating two approaches to achieve these goals. First, replace the subcritical Rankine steam cycle with a supercritical steam cycle. Second, add different amounts of biomass as feedstock to reduce emissions. Finally, implement several types of CCS, including sweet- and sour-shift pre-combustion and post-combustion.

Using the software, Thermoflow®, this study shows that utilizing …